
Features of a 2D Ising Model simulated with Markov chain

Monte Carlo methods

Jake Skelton

30th April 2021

Abstract

In this paper, we present observations of a two-dimensional Isingmodel, simulatedwith theMetropolis

algorithm, a Markov chain Monte Carlo method. Square lattices are used, with periodic boundary

conditions and nearest-neighbour spin-spin interactions. Considerations of Markov chain convergence

and time correlations are taken into account, and the variation of magnetisation and heat capacity with

temperature is observed, for a range of lattice sizes and applied magnetic fields. Hysteretic phenomena in

the Isingmodel under an applied field are also investigated. In addition, wemake an estimate of the critical

temperature of an infinite 2D lattice, 2.263 ± 0.013 �/:�. Onsager’s analytical result of 2/ln(1 +
√

2) �/:�
differs from our estimate by only 0.2%, and lies within error.

1 Introduction

Ferromagnetism is vital to much of our modern tech-

nology, but a full description of the phenomenon en-

tails all the usual problems with treating quantum

many-body interactions, and so there is great value

in simple models which retain some of the character-

istic features of ferromagnetism. One of the simplest

suchmodels that still offers useful insights is the Ising
model.

The Ising model is a scheme for modelling ferro-

magnetic materials that consists of a lattice of spin

sites which can point either up or down relative to

some global axis. These spins interact with one an-

other, pairwise, and the effects of an applied field

can also be included. In this work, we consider only

nearest-neighbour spin interactions, although next-

nearest-neighbour and global spin interaction incarn-

ations do exist.

Ising models can be considered in 1, 2, 3, or = di-

mensions, and with any lattice tiling. However, ana-

lytical solutions only exist for the 1D and 2D cases,

and the latter is notoriously complicated [1]; higher

dimensions require the employment of mean-field

theory or other approximations. A key element of

real ferromagnets that a goodmodel ought to capture

is the order-disorder phase transition. Below its Curie

temperature)2 , a ferromagnet exhibits spontaneous

magnetisation; above)2 it is unmagnetised. In fact,

such a transition is absent from the 1D Ising model

[2, 3]. For this reason, and in order to have analytic

results withwhich to compare, this work focuses on a

two-dimensional Ising model, on a square lattice for

simplicity.

Following this brief introduction, the ensuing sec-

tions of this paper describe an Ising model lattice

whose time evolution is simulated according to the

Metropolis algorithm, an example of a Markov chain

Monte Carlo (MCMC) method. Section 2 outlines

why an MCMC approach is appropriate, as well

as other requisite computational physics. Section 3

presents the key elements of our implementation of

theMetropolis algorithmand somedata on the code’s

performance. Section 4 describes the qualitative fea-

tures of the model: its time evolution, equilibrium

magnetisation and heat capacity, and behaviour un-

der an applied field. We also present a quantitative

prediction of the critical temperature of an infinite

lattice, and discuss the implications and explanations

of the features observed. Finally, section 5 offers con-

cluding remarks.

2 Background and approach

2.1 Ising canonical ensemble

Following the description of the general Ising model

given in the introduction, the Hamiltonian for such a

system is written [4]

� = −�
∑
〈8 , 9〉

B8B 9 − �
∑
8

B8 (1)

where B8 ∈ {±1} is the spin at the 8th lattice site, � is

the spin-spin interaction energy, and� is the applied

1

magnetic field strength. � is taken to be positive - spin

alignment lowers the system energy. The first sum is

over all pairs of nearest neighbours, and the second

is over all lattice sites. In this expression we are us-

ing an idealised system of units in which Planck’s

constant, the magnetic permeability, etc. do not fea-

ture. In the more explicit case of a square lattice of

size # × # , where sites may be assigned coordinates

(G, H), G ∈ [0, #), H ∈ [0, #), the Hamiltonian takes

the form

� = − �
2

∑
G,H

∑
G′,H′∈

nn(G,H)

BGHBG′H′ − �
∑
G,H

BGH . (2)

where the setnn(G, H) = {(G, H±1), (G±1, H)} includes
all the nearest neighbours of (G, H). The factor of 1/2
in front of the first sum ensures nearest-neighbour

’bonds’ are not double counted. In the remainder of

this paper, we shall take � = 1/2 in order to have �

and) as the only free parameters. In these units, the

maximum energy of a lattice with � = 0 is, conveni-

ently, equal to #2
.

As mentioned, there exists an analytic theory for

the 2D Ising model of infinite extent due to Onsager

[2], and many sources present important results of

this theory [1] and the mean-field approximation [5,

6]. We do not pursue either here, except to mention

Onsager’s prediction for the temperature atwhich the

order-disorder phase transition occurs; in our system

of units, this is)2 = 1/ln(1+
√

2). This prediction will

be important in section 4.

Like Onsager, we consider a canonical ensemble of
square lattices each connected to a reservoir at tem-

perature), in which the probability of a given spin

configuration {B8} being realised is

%({B8}) =
1

/
4−�({B8})/) . (3)

/ is the partition function

/(), � , �) =
∑
{B8}

4−�({B8})/) (4)

which depends only upon macroscopic parameters

(note that we have taken :� = 1).

2.2 Markov Chain Monte Carlo

In assuming a canonical ensemble we have created

an ergodic system, which is ideally suited to treat-

ment as a Monte Carlo Markov chain [7]. This pro-

cedure involves letting the Markov chain (the spin

lattice) explore state space (the space of all possible

spin configurations) bymeans of taking discrete steps

(altering the spin lattice), or not, according to a prob-

ability distribution. In our case, the choice of prob-

ability distribution is obvious: a Boltzmann factor

encasing the energy of a spin configuration change,

exp(−�({B8} � {B8}′)/)).
We do not prove that such a scheme creates an er-

godic Markov chain, but it does, ultimately because

a Boltzmann probability satisfies detailed balance [7].
Essentially, what we are doing is using MCMC to

bypass the need to evaluate the partition function (4).

Once the Markov chain reaches equilibrium, its

ergodic nature allows us gain information about the

target distribution, (3) by averaging outputs over time.

Determining when equilibrium is reached is an issue

of MCMC convergence, or burn-in [7, 8]. A few tech-

niques andmetrics have been established for diagnos-

ing convergence [8, 9], but many authors recommend

simply looking at the output of an MCMC simula-

tion as the most infallible approach. We describe our

methods in section 4.1, after an outline of of some of

our programming decisions in the following section.

3 Implementation

3.1 Preliminaries

The code for this work was written in Python, chosen

for its flexibility and excellent graphical packages.

Some light object-oriented programming was em-

ployed in order to keep the code tidy. A class
was defined to hold characteristic information about

a single lattice - its temperature, applied field, etc.,

and to wrap routines that were used very often

throughout the work and across multiple files. The

header for the class instantiation method is shown

in listing 1, see appendix A.2 for more details.

class lattice:
def __init__(self, sidelength , magfield ,

temp, uniform=False,
seed=None):

Listing 1: Lattice class instantiation. sidelength,
magfield, and temp correspond to the parameters # , �,
and) respectively. uniform controls whether the lattice
starts in a random configuration, or with all spins pointing
in the same direction.

The general workflow was to create one or more

lattice objects, then use class methods to evolve

them in time and collect statistics in the process - in

particular, the mean spin of the lattice, and the lattice

energy, for each time step. The statistics were pro-

cessed into secondary results (after discarding data

from unconverged Markov steps) and all relevant in-

formation fromone such simulation runwas stored in

a numpy ’.npz’ file - a collection of named arrays stored

2

as binary. The plotting and data analysis routines

were kept separate fromdata generation - data to plot

was assembled from the .npz files when needed. All

the plots in this paper were made using matplotlib.

Unfortunately, the fast vectorised routines of Py-

thon’s numpypackage areunsuitable forMarkov chain

calculations, owing to the conditional statement at

each step, whose outcome cannot be found ahead

of time. An individual Markov chain cannot bene-

fit from parallel computing either, its evolution is a

fundamentally serial process (though several inde-

pendent Markov chains are a different story). This

creates a challenge because, likemost interpreted lan-

guages, Python’s for loops are incredibly slow. The

solution adopted here was to use Cython, a language

extension to Python [10], which allows the creation

of compiled modules that make use of static typing.

3.2 Implementing the Metropolis algorithm

In the section 2.2, we were rather vague about what

alterations to the spin lattice are permitted in each

Markov step, but the code must be explicit. At each

time step, we loop over all sites in the # × # spin

lattice and, at each, find the energy required to flip

the spin, �(BGH � −BGH) (which may be negative). If

this energy, in a Boltzmann factor, exceeds a random

number in [0, 1] then the spin is flipped, otherwise,

it is left alone. The explicit form of the energy is easy

to calculate from (2),

�(BGH � −BGH) = BGH

(∑
nn

BG′H′ + 2�

)
. (5)

Note that this means negative-energy flips always oc-

cur. It should be clear that adding expressions like (5)

for every site in the lattice gives the energy of chan-

ging the spin configuration, wholesale. Hence, this

prescription accomplishes the algorithm in section

2.2.

There is a significant omission in the above

scheme: what happens to spins at the edges of the

square? To avoid complicated edge effects, and to

better compare with the theoretical results using in-

finite lattices, in this work we use periodic boundary
conditions. In doing so, each edge of the square is

identified with its opposite, and every site then has

four nearest neighbours
∗
.

Putting this together, below is a condensed ver-

sion of the main loop used in our program. This

loop is contained in the Cython code in appendixA.1.

def metrohaste(int numsteps , int[:,:] s,
double H, double T, RNG):

cdef int N = s.shape[0]
cdef double[:,:,:] p = RNG.uniform(0, 1,

size=(numsteps ,N,N))
for t in range(numsteps):

for i in range(N):
for j in range(N):

deltaE = (s[(i-1)%N, j] +
s[(i+1)%N, j] +
s[i, (j-1)%N] +
s[i, (j+1)%N] +
2*H)*s[i,j]

Multiply s by -1 if
inequality true, else by 1
s[i,j] *= (-1)**(exp(-deltaE/T)

> p[t,i,j])

return np.asarray(s)

Listing 2: Metropolis algorithm loop. p is an array of ran-
dom numbers against which to compare the Boltzmann
factor, s is the spin lattice. Note the use of modular arith-
metic for periodic boundary conditions.

There are a few things to explain in listing 2.

Firstly, the use of modular arithmetic when refer-

encing elements of the spin array: s[(i-1)%N, j].
This is to achieve periodic boundary conditions.

Secondly, p is a statically-typed Cython memoryview.
Memoryviews are just a form of array that is

slightly faster to operate on than a numpy array [10].

Into the array are put random numbers using a

numpy.random.Generator object RNG.

3.3 Random numbers

In this work we use the pseudo-random PCG64 gen-

erator [11], which is the default for numpy. For the

advantages of PCG over the classic Mersenne twister

of C stdlib.h fame, we refer the reader to [11]. Al-

though numpy.random does not require it, our code

creates explicit random number generator (RNG) ob-

jects. The reason is twofold. Firstly, it allows the use

of one global seed for a whole batch of independent

Markov chains, which makes results replicable (for

plotting, for example). Secondly, creating daughter

RNGs from one seed is a thread-safe method for ob-

taining random numbers, that does not clash with

parallel processing.

3.4 Parallel processing

A set of independent Markov chains, unlike a single

one, are ideal candidates for parallelising, and their

output data can be collated and averaged. We imple-

mented parallel processing in the Python standard

librarymodule multiprocessing, paying heed to the

∗
The author finds the analogy with Pac-Man to be helpful.

3

fact that parallel computing is only worthwhile for

long calculations; otherwise, the time to spawn new

threads outweighs the performance gain of multiple

processors.

3.5 Performance

The two primary measures taken to improve per-

formance, use of Cython and multiprocessing, have
already been mentioned. Aside from this, we used

obvious tricks such as using numpy over native Py-

thon wherever possible. In listings 3 and 4 we re-

produce some tests of the impact of the steps taken

to improve performance. Cython is over 100 times

faster than native Python, but the performance im-

provement using multiprocessing is more modest -

it halved the time for a calculation with 100 Markov

chains. As mentioned, this benefit dissolves for

shorter routines so parallelism was only employed

for the longer data collection runs in this work.

In [1]: N = 32
In [2]: numsteps = 1000
In [3]: RNG = np.random.default_rng(100)
In [4]: l = lattice(N, 0.0, 1.0)
In [5]: %timeit metrohaste_slow(numsteps ,

l.spins, l.H, l.T, RNG)
8.07 s ± 129 ms per loop
In [6]: %timeit metrohaste(numsteps , l.spins,

l.H, l.T, RNG)
51.2 ms ± 488 µs per loop

Listing 3: Cython performance test. metrohaste_slow
is implemented in standard Python, whereas metrohaste
is implemented in Cython. The performance difference
is dramatic: the same operation is performed 160 times
faster in the Cython code.

In [1]: N = 100
In [2]: numchains = 4
In [3]: numsteps = 10000
In [4]: %timeit lattice.stepforward_l(latlist,

numsteps , parallel=False)
20.4 s ± 270 ms per loop
In [5]: %timeit lattice.stepforward_l(latlist,

numsteps , parallel=True)
9.34 s ± 706 ms per loop

Listing 4: Parallel processing test. The same procedure is
executed twice as fast when Markov chains can be forked
into different threads.

4 Observations and results

This section gives a detailed summary of the obser-

vations and quantitative investigations of the Ising

model Markov chains. We begin with the first im-

pressions, testing if the code behaves as it should, and

a consideration of burn-in (that is, the convergence of

the Markov chain). Next, the behaviour of lattices at

various temperatures and of various sizes, but with

no applied field is investigated. In particular, we look

for the location of a ferromagnetic phase transition.

Finally, we make a brief enquiry into the behaviour

of lattices under the effects of a magnetic field. Be-

fore going any further, below is a brief glossary of

symbols used throughout the paper, for reference.

#2
Number of sites in a lattice

� Applied magnetic field

) Reservoir temperature

)2 Critical (Curie) temperature

B Spin

" Lattice magnetisation

� Lattice energy

� Heat capacity

C1 Burn-in time

Overbar,¯ Quantities averaged over space

Angle brackets, 〈〉 Quantities averaged over time

Fig. 1: Approach to equilibrium of a 32x32 lattice, starting
from a random distribution, at) = 0.1. Black pixels rep-
resent spin down lattice sites, and white pixels up. The
time gap between these images is not uniform: reaching
a structure of ’islands’ from a random distribution hap-
pens quickly, then the process slows as domains’ peri-
meter/area ratio becomes smaller. This burn-in happened
over the course of only 20 time steps. An animation of this
process is included with this report, as ’anim1.mp4’

4.1 Initial investigations

Animations of spin lattices as they evolve in time

were examined first. Representative samples are

shown in figures 1 and 2; black squares correspond

to spins pointing down, and white squares to those

pointing up. It became quite obvious that behaviour

can be separated into two regimes: at low temper-

atures () ∼ 0.5), lattices settle to a uniform spin

distribution (with some thermal noise) - either all

4

up or all down. At high temperatures () >∼ 1.5),

the spin configurations look convincingly random,

as white noise
†
. The temperatures involved do not

change substantially with lattice size. Recall that in

the units used here, Onsager’s critical temperature is

)2 = 1/ln(1 +
√

2) ≈ 1.1346. These observations are

unsurprising enough, from a physical point of view,

to constitute a check that there were no glaring bugs

in the code. A further physical check that the code

satisfied is that, at low temperatures, applying some

� > 0 causes all the spins to settle pointing up, and

vice versa for � < 0.

At temperatures nearer 1.1, as depicted in figure

2, the configurations seen are much more complex.

Large patches of uniform spin coexist with more het-

erogeneous areas. The lattices here embody two hall-

marks of a second-order phase transition, namely

structure on all length scales and dynamics dominated

by fluctuations [3, 4].

Fig. 2: View of a 256x256 lattice at equilibrium near the
critical temperature. The classic characteristic of critical
phenomena, structure at all length scales can be made
out quite well (although this simulation does of course
have hard limits on such scales). An animation of this
process is included with this report, as ’anim2.mp4’

Not all low-temperature lattices relax to a uniform

distribution quickly. Those started from a random

configuration can form very interesting ’band’ struc-

tures. Keeping the periodic boundary conditions in

mind, they are best thought of as a neck of spin up

(say) on a torus of spin down, forming two distinct

regions. These bands, which are not straight, are

observed to travel parallel to their length. A static

image of these structures would not be very illumin-

ating, but an animation is includedwith this report as

’anim3.mp4’. The author tentatively proposes these

structures as an example of solitons - they meet the

definition in [5].

In any case, these structures are metastable - they
can persist for a long time (thousands of time steps in

some cases) but then relax very quickly to a uniform

configuration; for an illustration see figure 3. Phys-

ically, this is easily explained by the lattice not hav-

ing enough thermal energy to anneal, but it presents

a barrier to acquiring information from equilibrium

spin configurations. These metastable states exem-

plify the issue of MCMC burn-in mentioned in sec-

tion 2.2.

Fig. 3: Mean spin (magnetisation per atom) of 30 lattice
Markov chains over time, at) = 0.3, starting from a ran-
dom spin configuration. Most of the chains converge relat-
ively quickly (within 1000 steps), but a minority encounter
a metastable state. This plot shows six such metastable
chains, one of which fails to converge in 30,000 steps. No-
tice that the transition from metastability to equilibrium can
happen very quickly.

4.2 Determining burn-in

As mentioned previously, there are a few popular

diagnostics for estimating whether a Monte Carlo

Markov chain has converged, but [9], a review of such

methods, is somewhat pessimistic:

[Many theoretical statisticians] conclude that

all such diagnostics are fundamentally un-

sound. Many researchers in other areas

where MCMC methods have been used for

many years (e.g., physics and operations re-

search) have also reached this conclusion.

In this work, we used a two-pronged approach; for

temperatures below some (arbitrary) cutoff, the lat-

tice was assumed to have converged when the mean

spin, B̄(C), was equal to ±1 to within some bound.

†
With the plot format chosen, the comparison with terrestrial television ’static’ is rather apt.

5

For temperatures above the cutoff, convergence was

taken as the period after the cumulative time-average

of B̄(C) had fallen below some bound. In the end, the

most important arbiter of the quality of these dia-

gnostics is whether they agree with a picture of the

Markov chains’ output over time. Such a picture is

shown in figure 5.

Fig. 4: Burn-in times for lattice Markov chains of various
sizes as a function of temperature, starting from top) a uni-
form spin lattice, and bottom) a random starting configur-
ation. Points to note are: start state makes little difference
to lattices above)2 ; burn-in can take as several thousand
steps near)2 ; and metastability has a dramatic effect on
burn-in at low temperatures - many chains did not con-
verge in the 30,000 steps over which the simulation ran.
It must be pointed out that the burn-in determination al-
gorithm used was different (as explained in section 4.2)
either side of) = 0.8 (chosen arbitrarily), and this explains
the discontinuity here, but not the overall trend.

For the purpose of choosing a simulation run time

that includes sufficient post-convergence data, it is

worth mapping the variation of burn-in time, C1 with

temperature) and lattice size # . Such data is shown

in figure 4, with both uniformand random initial con-

figurations. The takeaways are that C1 is unaffected

by start state for) >)2 ; a uniform start state elim-

inates metastability and shortens burn-in below)2 ;

besides metastable states, the longest burn-in occurs

near)2 ; and finally the variation with # is marginal.

These investigations informed data collection for our

subsequent work.

Fig. 5: Mean spin of eight lattices over time, and their
algorithmically-determined burn-in times. The first lattice
is at) = 0.2, and the temperature is incremented by 0.2
thereafter. The zero-spin position of each lattice is offset
from the previous by -2. The point after which the lattices
are taken to have burnt in are marked with blue crosses.
Note that for useful data it is better to exclude some early
burnt-in-points than to erroneously include pre-converged
data.

4.3 Temperature variation

Calculatinguseful timeaverages ofMarkov chainout-

puts requires a consideration of not just convergence,

but also time correlation. If a Markov chain has not

’forgotten’ its history over an averaging interval, the

average will contain little information about the tar-

get distribution - (3) in our case. The correlations can

be quantified by computing the autocovariance of the

magnetisation, �"(�).

�"(�) = 〈"(C + �) − 〈"〉〉〈"(C) − 〈"〉〉 (6)

where" = #2 B̄ is themagnetisation and angle brack-

ets denote a time average. The decorrelation time,

�4 , is the interval over which the autocorrelation

�"(�)/�"(0) drops to 1/4, and is a measure of the

’memory’ of the Markov chain. The variation of de-

correlation time with temperature and # is shown in

6; the divergence near)2 is striking, even on a logar-

ithmic scale. This divergence is an example of critical
slowing down [12].

The autocovariance of the magnetisation is equi-

valent to the autocorrelation of the magnetisation
fluctuations. This is significant because, under the

Wiener-Khinchin theorem, the power spectral dens-

ity of fluctuations (in any quantity) is given by the

Fourier transform of their autocorrelation. Thus,

6

computing �" gives one a route to the noise spec-

trum of themodel. We do not pursue this any further

here, but more details are given in [1, 3, 5].

With these data informing appropriate lengths for

averages, more details of the Isingmodel phase trans-

ition were established. Figure 7 shows the variation

of time-averaged magnetisation, and heat capacity

with temperature for a range of lattice sizes.

Fig. 6: Decorrelation time (the characteristic time over
which magnetisation autocovariance decays) as a func-
tion of temperature for four lattices of varying size. The
Markov chains that produced these data were all run for
30,000 time steps. It is obvious that there is significant
time-correlated behaviour near the critical temperature for
all lattice sizes, and this has implications for the size of a
useful time-average at such temperatures. Either side of
this critical temperature, there is remarkably little time cor-
relation (not to be confused with low temperature spatial
correlation).

The data for magnetisation reinforce the qualitat-

ive observations described in section 4.1: the equilib-

rium magnetisation is ±#2
, corresponding to a uni-

form spin configuration, below the critical temperat-

ure. Above it, a disordered configuration is favoured,

with 〈"〉 = 0. The relatively smooth variation of 〈"〉
with) marks this out as a second-order phase trans-

ition.

The heat capacity � was obtained, for each lattice,

using the fluctuation dissipation theorem [3]; since �

is the response function linking lattice energy with

temperature, the relevant fluctuations are those of

energy:

�()) ≡ %�

%)
=
〈Δ�2〉
)2

; Δ�(C) = �(C) − 〈�〉. (7)

The results are shown in the lower panel figure 7. The

general profile is in good agreement with the literat-

ure [6] - � peaks at the critical temperature - but the

singularity predicted by Onsager’s results andmean-

field theory is not evident. The peaks do become

more severe with increasing # , however. This obser-

vation, and the variation of)2 with # - quite clear

in the plot, are consequences of finite-size scaling [6].

The canonical relationship is

)2(#) =)2(∞) + 0#−1/�
(8)

for some system-specific parameters 0 and �.

Fig. 7: The magnetisation and heat capacity of five lat-
tices of different size as a function of reservoir temperat-
ure. Both quantities have been normalised by number of
sites. A rolling average has been added to the lower plot to
aid the eye. The symmetry-breaking transition to magnetic
order is clear in the magnetisation plot. Notice that that the
peaks in heat capacity happen at broadly the same tem-
perature as the order/disorder transition, but that variation
between lattice sizes is easier to distinguish in the lower
plot.

Our data to examine this relationship are shown

infigure 8. The critical temperatures, for each# , were

taken as the locations of the largest heat capacity data

point. This crude approachwasmoderated by taking

the next highest points, to the left and right, as the er-

ror in the)2(#) estimate. Corresponding error bars

are plotted in the figure. All these data were then

fed into a non-linear least squares fitting algorithm

(optimize.curve_fit of the scipy package). The es-
timate for the critical temperature of an infinite lattice

thus produced, accounting for error in determining

)2(#) and in the fitting, was 1.132± 0.006. The theor-

etical value (in the units used here) is 1.1346..., within

error and representing a difference of 0.2% from our

estimate.

7

Fig. 8: Variation of the critical temperature with lattice size,
plotted on a linear versus logarithmic scale. The theoret-
ical relationship (8) was fitted to the numerical heat capa-
cities, taking into account the error in their determination.
The critical temperature for an infinite lattice corresponds
to parameter c.

4.4 Non-zero magnetic field

Finally, the behaviour of the Isingmodel under an ap-

plied field was investigated. It was already noticed

(section 4.1) that the equilibrium, low temperature

magnetisation aligns with the field direction, as ex-

pected. However, the temperature above which the

spin configuration appears random is altered by non-

zero�; applying a stronger field causes the transition

region to become larger, and shifts the inflectionpoint

of the magnetisation to higher temperatures. These

effects are illustrated, for the magnetisation and heat

capacity, in figure 9.

To probe the well-known ferromagnetic phe-

nomenon of hysteresis - dependence of a system’s dy-

namics on its past, code was written allowing the

applied field to take a different value at each time

step. Figure 10 shows the results of changing � si-

nusoidally over the interval [0, 3�]. Hysteresis is well

evident at low temperatures - the "� curve has the

classic form [13] and encloses a large area. The lower

plots show the system energy, and the observation

that this continually decreases for the coldest lattice

illustrates that, in a hysteretic cycle, energy is trans-

ferred to the reservoir. This is because the driving

field and the magnetisation are out of phase, and

the area of the "� plot is another giveaway. This

area is seen to shrink as temperature increases, until,

at temperatures above)2(�), the "� relationship is

approximately linear. Of course, at very high tem-

peratures, " = 0.

Fig. 9: The magnetisation and heat capacity of a 32 × 32

lattice, under five different strengths of applied field, as
a function of reservoir temperature. Both quantities have
been normalised by number of sites, ad a rolling average
has been added to aid the eye. Note the smoothing of the
transition region with increased field strength, and the in-
crease in critical temperature.

8

Fig. 10: Plots of mean spin and lattice energy against applied field for a 32× 32 lattice, at three temperatures, showing
hysteresis. Mean spin plots are on the top row, and energy plots the bottom. The plot has been coloured such that
it gets lighter as time progresses; the applied field was modulated sinusoidally with a cycle length of 3� over 10,000
steps (representing an maximum change of Δ� = 6 × 10

−4 between steps). The behaviour in the three temperature
regimes is wildly different; hysteresis is most apparent at low temperatures, whereas B̄ appears to change linearly with
� at high temperatures.

5 Conclusion

This paper has presented observations of a square

Ising model simulated with the Metropolis al-

gorithm, a Markov chain Monte Carlo method. After

considering the implications ofMarkov chain conver-

gence and correlations in the output, results for equi-

libriummagnetisation andheat capacity as a function

of temperature were obtained, without an applied

field. These results are in good qualitative agreement

with the literature, and with simple thermodynamic

arguments. The variation of critical temperaturewith

lattice size, which is very apparent in our data, was

used to extract a quantitative prediction from the sim-

ulations, of the critical temperature for an infinite 2D

lattice,)2(∞). Our estimatewas)2(∞) = 1.132±0.006.

In the units used in this work, Onsager’s analytic res-

ult is 1/(ln(1 +
√

2)) ≈ 1.1346. This differs from our

estimate by 0.2% and lies within error.

We also made a brief survey of the behaviour

of the model under an applied magnetic field. It

was found that the region over which the order-

disorder transition takes place broadens, and the

critical temperature increases, with increased field

strength. Cycling the field sinusoidally produces

hysteretic effects at temperatures below the critical

temperature.

There remain unexplored features of this model;

had time permitted, we would have sought to invest-

igate the frequency spectrum of energy and magnet-

isation fluctuations, the behaviour of the magnetic

susceptibility in the transition region, and the effect

of alternatives to the Metropolis algorithm on critical

slowing-down.

Word count = 2956

References

1. Landau, L. D. & Lifshitz, E. M. Statistical Physics
Third Edit (eds Landau, L. D. & Lifshitz, E. M.)

446–516. isbn: 978-0-08-057046-4. doi:https://
doi . org / 10 . 1016 / B978 - 0 - 08 - 057046 -
4.50021-X (Butterworth-Heinemann, Oxford,

1980).

2. Onsager, L. Crystal Statistics. I. A Two-

Dimensional Model with an Order-Disorder

9

https://doi.org/https://doi.org/10.1016/B978-0-08-057046-4.50021-X
https://doi.org/https://doi.org/10.1016/B978-0-08-057046-4.50021-X
https://doi.org/https://doi.org/10.1016/B978-0-08-057046-4.50021-X

Transition. Phys. Rev. 65, 117–149. doi:10.1103/
PhysRev.65.117 (Feb. 1944).

3. Blundell, S. J. & Blundell, K. M. Concepts
in Thermal Physics 2nd ed. eng, 512. isbn:

9780199562091. doi:10 . 1093 / acprof : oso /
9780199562091.001.0001 (Oxford University

Press, Oxford, 2009).

4. Grosche, F. M. Thermal and Statistical Physics 72
(Course Handout: Depertment of Physics, Uni-

versity of Cambridge, 2020).

5. Chaikin, P. M. & Lubensky, T. C. Prin-
ciples of Condensed Matter Physics 590–

661. isbn: 9780521432245. doi:10 . 1017 /
CBO9780511813467 (Cambridge University

Press, Cambridge, June 1995).

6. Plischke, M. & Bergersen, B. Equilibrium Statist-
ical Physics 3rd. isbn: 978-981-256-048-3. doi:10.
1142/5660 (World Scientific, Apr. 2006).

7. Press, W. H., Teukolsky, S. A., Vetterling, W. T. &

Flannery, B. P.Numerical recipes : the art of scientific
computing 3rd ed. isbn: 0521880688 (Cambridge

University Press, Cambridge ; New York, N.Y.,

2007).

8. Gilks, W., Richardson, S. & Spiegelhalter, D.

Markov Chain Monte Carlo in Practice 1st ed. (eds
Gilks, W., Richardson, S. & Spiegelhalter, D.)

512. isbn: 9781482214970. doi:10.1201/b14835
(Chapman andHall/CRC,NewYork, USA, Dec.

1995).

9. Cowles, M. K. & Carlin, B. P. Markov Chain

Monte Carlo Convergence Diagnostics: A Com-

parativeReview. Journal of theAmerican Statistical
Association 91, 883–904. issn: 1537274X. doi:10.
1080/01621459.1996.10476956 (June 1996).

10. Behnel, S. et al.Cython: The Best of BothWorlds.

Computing in Science & Engineering 13, 31–39.
issn: 1521-9615. doi:10.1109/MCSE.2010.118
(Mar. 2011).

11. O’Neill, M. E. PCG: A Family of Simple Fast Space-
Efficient Statistically Good Algorithms for Random
NumberGeneration tech. rep.HMC-CS-2014-0905

(Harvey Mudd College, Claremont, CA, Sept.

2014).

12. Wolff, U. Collective Monte Carlo Updating for

Spin Systems.Physical ReviewLetters 62, 361–364.
issn: 00319007. doi:10.1103/PhysRevLett.62.
361 (Jan. 1989).

13. Chikazumi, S. Physics of Ferromagnetism 2nd ed.

isbn: 9780191569852 (Oxford University Press,

Oxford, 2009).

10

https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1093/acprof:oso/9780199562091.001.0001
https://doi.org/10.1093/acprof:oso/9780199562091.001.0001
https://doi.org/10.1017/CBO9780511813467
https://doi.org/10.1017/CBO9780511813467
https://doi.org/10.1142/5660
https://doi.org/10.1142/5660
https://doi.org/10.1201/b14835
https://doi.org/10.1080/01621459.1996.10476956
https://doi.org/10.1080/01621459.1996.10476956
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361

A Code

The numerical code used in this work was spread over two files, markov_chain_monte_carlo.pyx and

comp_project_0_js2443.py. The contents of these are listed below. In addition, three extra files with names

of the form comp_project_’n’_js2443.py contain plotting code.

A.1 Metropolis algorithm - Cython code

import numpy as np
cimport cython
from libc.math cimport exp

@cython.boundscheck(False)
@cython.nonecheck(False)
def metrohaste(int numsteps , int[:,:] s, double H, double T, RNG):

"""
A fast, Cython-based method to carry out one timestep of the Metropolis -
-Hastings algorithm , a Markov chain Monte Carlo method. The lattice
is stepped through in a left-to-right scanning fashion.

Parameters

numsteps : int

The number of Metropolis -Hastings timesteps to perform.
s : square numpy array of ints

The spin lattice, must be square and of type int.
H : float

The applied magnetic field, with dimensions (energy)/(spin).
T : float

The heat bath temperature , with dimensions of (energy).
RNG : numpy.random generator object

Seeded random number generator. Passing this to the function allows
results to be repeated starting from a mother seed.

Returns

s_new : numpy array

The updated spin lattice, ater ’numsteps’ timesteps.

"""

cdef Py_ssize_t N_ind = s.shape[0]
cdef int N = s.shape[0]

cdef double deltaE
cdef double[:,:,:] p = RNG.uniform(0, 1, size=(numsteps,N,N))
cdef Py_ssize_t t, i, j

for t in range(numsteps):
for i in range(N_ind):

for j in range(N_ind):
deltaE = (s[(i-1)%N, j] + s[(i+1)%N, j] +

s[i, (j-1)%N] + s[i, (j+1)%N] + 2*H)*s[i,j]
s[i,j] *= (-1)**(exp(-deltaE/T) > p[t,i,j])

return np.asarray(s)

@cython.boundscheck(False)
@cython.nonecheck(False)
def metrohaste_stats(int numsteps , int[:,:] s, double H, double T, RNG):

"""
A fast, Cython-based method to carry out one timestep of the Metropolis -
-Hastings algorithm , a Markov chain Monte Carlo method. The lattice
is stepped through in a left-to-right scanning fashion. This version
outputs statistics of the lattice over time, and is designed to called
to output the entire length of a simulation [in practice this means it
has to generate random numbers timestep -by-timestep , to conserve memory].

11

Parameters

numsteps : int

The number of Metropolis -Hastings timesteps to perform.
s : square numpy array of ints

The spin lattice, must be square and of type int.
H : float

The applied magnetic field, with dimensions (energy)/(spin).
T : float

The heat bath temperature , with dimensions of (energy).
RNG : numpy.random generator object

Seeded random number generator. Passing this to the function allows
results to be repeated starting from a mother seed.

Returns

s_new : numpy array

The updated spin lattice, ater ’numsteps’ timesteps.
sbars : numpy array

A 1D array of the lattice’s mean spin at each timestep.
energies :

A 1D array of the lattice’s total energy at each timestep.
"""
cdef Py_ssize_t N_ind = s.shape[0]
cdef int N = s.shape[0]
cdef double deltaE, E_t = 0
cdef int count = 0, sqcount = 0
cdef double[:,:] p = np.zeros((N, N))
cdef double[:] sbars = np.zeros(numsteps, dtype=float)
cdef double[:] energy = np.zeros(numsteps, dtype=float)
cdef Py_ssize_t t, i, j

for i in range(N_ind):
for j in range(N_ind):

E_t -= (0.25*(s[(i-1)%N, j] + s[(i+1)%N, j] +
s[i, (j-1)%N] + s[i, (j+1)%N]) + 2*H)*s[i,j]

energy[0] = E_t

for t in range(numsteps):
count = 0
sqcount = 0
p = RNG.uniform(0, 1, size=(N,N))
for i in range(N_ind):

for j in range(N_ind):
deltaE = (s[(i-1)%N, j] + s[(i+1)%N, j] +

s[i, (j-1)%N] + s[i, (j+1)%N] + 2*H)*s[i,j]
if (exp(-deltaE/T) > p[i,j]):

s[i,j] *= -1
E_t += deltaE

count += s[i,j]
sqcount += s[i,j]*s[i,j]

sbars[t] = <double>count/<double >(N*N)
energy[t] = E_t

return (np.asarray(s), np.asarray(sbars), np.asarray(energy))

@cython.boundscheck(False)
@cython.nonecheck(False)
def metrohaste_vect(int numsteps , int[:,:] s, double[:] H, double[:] T, RNG):

"""
A fast, Cython-based method to carry out one timestep of the Metropolis -
-Hastings algorithm , a Markov chain Monte Carlo method. The lattice
is stepped through in a left-to-right scanning fashion. This version
outputs statistics of the lattice over time, like metrohaste_stats , but
takes temperature and magnetic field arguments as vectors of length
’numsteps’, in order to cycle the magnetic field or anneal the lattice
according to a predefined trajectory.

12

Parameters

numsteps : int

The number of Metropolis -Hastings timesteps to perform.
s : square numpy array of ints

The spin lattice, must be square and of type int.
H : float

The applied magnetic field, with dimensions (energy)/(spin).
T : float

The heat bath temperature , with dimensions of (energy).
RNG : numpy.random generator object

Seeded random number generator. Passing this to the function allows
results to be repeated starting from a mother seed.

Returns

s_new : numpy array

The updated spin lattice, ater ’numsteps’ timesteps.
sbars : numpy array

A 1D array of the lattice’s mean spin at each timestep.
energies :

A 1D array of the lattice’s total energy at each timestep.
"""
cdef Py_ssize_t N_ind = s.shape[0]
cdef int N = s.shape[0]
cdef double deltaE, E_t = 0, T_t = T[0], H_t = T[0]
cdef int count = 0, sqcount = 0
cdef double[:,:] p = np.zeros((N, N))
cdef double[:] sbars = np.zeros(numsteps, dtype=float)
cdef double[:] energy = np.zeros(numsteps, dtype=float)
cdef Py_ssize_t t, i, j

for i in range(N_ind):
for j in range(N_ind):

E_t -= (0.25*(s[(i-1)%N, j] + s[(i+1)%N, j] +
s[i, (j-1)%N] + s[i, (j+1)%N]) + 2*H_t)*s[i,j]

energy[0] = E_t

for t in range(numsteps):
T_t = T[t]
H_t = H[t]
count = 0
sqcount = 0
p = RNG.uniform(0, 1, size=(N,N))
for i in range(N_ind):

for j in range(N_ind):
deltaE = (s[(i-1)%N, j] + s[(i+1)%N, j] +

s[i, (j-1)%N] + s[i, (j+1)%N] + 2*H_t)*s[i,j]
if (exp(-deltaE/T_t) > p[i,j]):

s[i,j] *= -1
E_t += deltaE

count += s[i,j]
sqcount += s[i,j]*s[i,j]

sbars[t] = <double>count/<double >(N*N)
energy[t] = E_t

return (np.asarray(s), np.asarray(sbars), np.asarray(energy))

A.2 A class to wrap Ising lattices

import numpy as np
import markov_chain_monte_carlo as mcmc
import multiprocessing as multi
import time
from functools import partial
import matplotlib.pyplot as plt
import plotaesthetics

class lattice:

13

"""
A simple class to wrap the important aspects of a lattice of Ising model
spins - number of lattice sites, applied field, temperature etc. Also
includes methods to step the lattice forward in time according to the
Metropolis -Hastings algorithm and to calculate statistics.
"""
def __init__(self, sidelength , magfield, temp, uniform=False,

seed=None):
"""
Initialise the lattice. Stores the characteristics passed as
arguments but also calculates the mean spin (mean magnetisation per
site) and variance in spin.

Parameters

sidelength : int

Square root of the number of lattice sites in the square lattice.
magfield : float

Applied magnetic field (permeability equals unity), with
dimensions (energy)/(spin).

temp : float
Heat bath temperature , with dimensions of (energy) (k_B := 1).

uniform : bool, optional
Whether to initialise the lattice with spins all pointing up.
Otherwise , a random lattice is generated. The default is False.

seed : int
Seed for the random number generator assigned to this lattice,
which is used in the ’stepforward’ method to evolve the lattice in
time.

Returns

None.

"""
self.time = 0
self.N = sidelength
self.H = magfield
self.T = temp
self.rng = np.random.Generator(np.random.PCG64(seed))

if uniform == ’checkerboard’:
For testing purposes
self.spins = (-1)**(np.sum(np.indices((self.N, self.N)),

axis=0)%2)
if uniform == ’dynamic’:

uniform for T < 1, random for T > 1
if self.T < 1.0:

self.spins = ((-1)**self.rng.integers(0,2)*
np.ones((self.N, self.N), dtype=int))

else:
self.spins = (-1)**self.rng.integers(0, 2,

size=(self.N, self.N), dtype=int)
elif uniform:

self.spins = ((-1)**self.rng.integers(0,2)*
np.ones((self.N, self.N), dtype=int))

else:
self.spins = (-1)**self.rng.integers(0, 2, size=(self.N, self.N),

dtype=int)
self.E = self.updateE()

def __str__(self):
"""
Create a toy string version of the spin lattice when the argument to
’print’; prints a blank space where s = -1, and a unicode square where
s = +1.
"""
string = ’’
for i in range(self.N):

14

for j in range(self.N):
string += ’\u25a0 ’ if (self.spins[i,j] + 1) else ’ ’

string += ’\n’
return string

def stepforward(self, numsteps=1, desiredout=’spins’):
"""
A Cython-enhanced method to carry out the Metropolis -Hastings
algorithm on the spin lattice, for one timestep.
This function is dependent on the ’metrohaste’ import, which in turn
is dependent on a successfully compiled
’markov_chain_monte_carlo.pyx’. If a link in this chain does
not work, please use ’stepforward_slow’, but there will be a
performance penalty of around 100x.

Parameters

numsteps : int, optional

Number of timesteps to move. Only the final spin lattice is
returned for numsteps > 1. The default is 1.

desiredout : string, optional
One of ’stats’ and ’spins’. If ’stats’ is passed, the mean and
variance of the spins at each timestep is returned; if ’spins’ is
passed, the lattice is skipped to its final state and the
array of spins returned. The default is ’spins’.

Returns

Either the tuple (’sbars(t)’, ’energies(t)’, burn-in time) or the
final spin lattice after ’numsteps’.

"""
s = self.spins
if desiredout == ’stats’:

out = mcmc.metrohaste_stats(numsteps, s, self.H, self.T, self.rng)
self.spins = out[0]
self.E = out[3][-1]
if self.time == 0:

burn = self.findburnins_highT(out[1])
else:

burn = np.nan
self.time += numsteps
return (out[1], out[2], out[3], burn)

else:
self.spins = mcmc.metrohaste(numsteps , s, self.H, self.T, self.rng)
self.time += numsteps
return self.spins

@staticmethod
def stepforward_l(latlist, numsteps=1, parallel=False):

"""
As for ’stepforward’, but now a list of lattices should be passed.
This allows for vectorisation of statistical calculations over an
ensemble of Markov chains (burn-in times in particular).

Parameters

latlist : iterable

list, tuple or numpy array of lattice objects.
numsteps : int, optional

See ’stepforward’. The default is 1.

Returns

See ’stepforward. Now numpy arrays of the usual returns are
returned , with the first index corresponding to the particular
Markov chain.

"""

15

numchains = len(latlist)
sbars = np.zeros((numchains , numsteps))
Es = sbars.copy()
if (latlist[0].N*numsteps > 100000 and numchains > 1) and parallel:

print(’Parallelism invoked’)
funcs = [partial(mcmc.metrohaste_stats , numsteps,

l.spins, l.H, l.T, l.rng) for l in latlist]
outs = parallelise(funcs)
for m in range(numchains):

latt = latlist[m]
out = outs[m]
latt.spins = out[0]
sbars[m], Es[m] = out[1:3]
latt.E = Es[m,-1]

else:
for m in range(numchains):

latt = latlist[m]
out = mcmc.metrohaste_stats(

numsteps , latt.spins, latt.H, latt.T, latt.rng)
latt.spins = out[0]
sbars[m], Es[m] = out[1:3]
latt.E = Es[m,-1]

Ts = np.array([l.T for l in latlist])
burns = lattice.findburnins(sbars, Ts, bound=1/(latlist[0].N))

return(sbars, Es, burns)

@staticmethod
def stepforward_vect(latlist, H, T, numsteps=1):

"""
As for ’stepforward’, but now a list of lattices should be passed.
This allows for vectorisation of statistical calculations over an
ensemble of Markov chains (burn-in times in particular).

Parameters

latlist : iterable

list, tuple or numpy array of lattice objects.
numsteps : int, optional

See ’stepforward’. The default is 1.

Returns

See ’stepforward. Now numpy arrays of the usual returns are
returned , with the first index corresponding to the particular
Markov chain.

"""
numchains = len(latlist)
sbars = np.zeros((numchains , numsteps))
Es = sbars.copy()
if latlist[0].N*numsteps > 100000 and numchains > 1:

print(’Parallelism invoked’)
funcs = [partial(mcmc.metrohaste_vect , numsteps,

latlist[m].spins, H[m,:], T[m,:], latlist[m].rng)
for m in range(numchains)]

outs = parallelise(funcs)
for m in range(numchains):

latt = latlist[m]
out = outs[m]
latt.spins = out[0]
sbars[m], Es[m] = out[1:3]
latt.E = Es[m,-1]

else:
for m in range(numchains):

latt = latlist[m]
out = mcmc.metrohaste_vect(

numsteps , latt.spins, H[m,:], T[m,:], latt.rng)
latt.spins = out[0]

16

sbars[m], Es[m] = out[1:3]
latt.E = Es[m,-1]

burns = lattice.findburnins_highT(sbars, bound=1e-2/latlist[0].N)

return(sbars, Es, burns)

def updateE(self):
"""
Manually re-compute the total energy of the lattice, using the
array of spins, at the current time.
"""
s = self.spins
self.E = -np.sum((0.25*(np.roll(s, 1, axis=0) + np.roll(s, -1, axis=0)+

np.roll(s, 1, axis=1) + np.roll(s, -1, axis=1))
+ 2*self.H)*s)

return self.E

@staticmethod
def findburnins(sbars, Ts, Tthresh=0.8, bound=1e-2, binsize=10):

"""
A hybrid method to determine burn-in that takes an input of mean spins
over time, ’sbars’, and splits it according to the corresponding
lattice temperatures ’Ts’. Temperatures higher than ’bound’ have their
spins passed to ’findburnins_highT’. Lower temperatures are operated on
by this function , which examines when the mean spin - split into time
averaged chunks - gets closer to +/- 1 than bound.

Parameters

sbars : numpy array

m x n array of mean spin over n numsteps for m lattices.
Ts : numpy array

Array of length m containing corresponding lattice temperatures.
Tthresh : float, optional

The temperature boundary at which to assign the lattices to
different algorithms. The default is 0.8.

bound : float, optional
The user-chosen value that (|equilibrium spin| - 1) should not
be expected to exceed. The default is 1e-2.

binsize : int, optional
The size of the chunks over which ’sbars’ should be time-averaged.
This helps mitigate the effect of thermal noise. The default is 10.

Returns

burns : numpy array

Array with the same dimensions as ’Ts’ - the burn-in time for each
lattice.

"""

try:
numchains = sbars.shape[0]
numsteps = sbars.shape[1]

except IndexError as e:
print(e)
numchains = 1
numsteps = sbars.shape[0]
sbars = np.reshape(sbars, (1, numsteps))
Ts = np.reshape(Ts, (1, 1))

burns = (numsteps -1)*np.ones(numchains , dtype=int)
lowTinds = np.arange(numchains , dtype=int)[Ts < Tthresh]
highTinds = np.arange(numchains , dtype=int)[np.logical_not(Ts<Tthresh)]

binmean = np.cumsum(sbars -
np.hstack((np.zeros((numchains , binsize)),

sbars[:,:-binsize])), axis=1)/binsize
if highTinds.size:

17

burns[highTinds] = lattice.findburnins_highT(sbars[highTinds ,:],
bound=bound/100)

chains_satis = np.any(np.abs(np.abs(binmean[lowTinds ,:]) - 1) < bound,
axis=1)

burnslow = burns[lowTinds] ## Juggling array definitions to modiy
arrays in place

burnslow[chains_satis] = np.argmax(
np.abs(np.abs(binmean[lowTinds ,:]) - 1) < bound,
axis=1)[chains_satis]

burns[lowTinds] = burnslow

return burns

@staticmethod
def findburnins_highT(sbars, bound=5e-4):

"""
An alternative to method to determine the burn-in time that handles
thermal fluctuations better but cannot diagnose low temperature
metastability. This method focuses on finding when the cumulative
average of mean spins,
$$ \frac{1}{t}\sum_{t’=0}^{t} \frac{\bar{s}(t’)} $$
falls below a user-defined ’bound’. This is observed to discriminate
quite accurately between relatively short burn-ins.

Parameters

sbars : numpy array

Either a 1D array of mean spins at each timestep for a single
lattice, or a 2D array with the first index denoting which lattice
the mean spins correspond to.

bound : float, optional
The user-chosen value to which the average should relax before the
label ’bured-in’ applies. The default is 1e-3.

Returns

burns : int or numpy array of ints

The determined burn-in time(s) of the supplied lattice(s).

"""
try:

numchains = sbars.shape[0]
numsteps = sbars.shape[1]

except IndexError as e:
print(e)
numchains = 1
numsteps = sbars.shape[0]
sbars = np.reshape(sbars, (1, numsteps))

cmean = np.cumsum(sbars, axis=1)/np.arange(1, numsteps + 1)
burns = np.argmin(np.abs(np.abs(np.diff(cmean, axis=1)) - bound),

axis=1)
return burns

@staticmethod
def autocorrelation(sbars, burns):

"""
Computes the autocorrelation of all the rows in ’sbars’, discarding
those values before burn-in. The different burn-ins for each row
means that a loop over the number of Markov chains has to be
performed , unforunately; np.correlate is used at each iteration ,
which is fast because it uses FFT behind the scenes.
The output of this function is formatted so that if ’sbars’ is a
MxN array, ’autocorrs’ will be a Mx(2N+1) array; this is quite
familiar for FFTs.

Parameters

18

sbars : numpy array
1D or 2D array of mean spins over time. Time should evolve along
the second axis.

burns : numpy array
1D numpy array of the same length as sbars’ first axis, containg
the burn-in times for each Markov chain.

Returns

autocorrs : numpy array

Autocorrelation of each of the row vectors of ’sbars’, with shape
as described in the header. Cutting off the parts of each spin-
-over-time vector pre burn-in leads to autocorrelation vectors of
differing sizes (2*(numsteps-burnin)+1 to be specific), so each
autocorrelation is symmetrically padded with zeros.

decorrtimes : numpy array
Array of decorrelation times (when autocorrelation first dips
below 1/e), of the same shape as ’burns’.

"""
try:

numsteps = sbars.shape[1]
numchains = sbars.shape[0]

except IndexError:
numsteps = sbars.size
numchains = 1
sbars = sbars.reshape(1, numsteps)
burns = burns.reshape(1)

gsteps = numsteps - burns
autocovs = np.zeros((numchains , 2*numsteps+1))
for m in range(numchains):

dev = sbars[m,burns[m]:] - np.mean(sbars[m,burns[m]:])
out = np.correlate(dev, dev, mode=’full’)
autocovs[m,:] = np.pad(out, (burns[m]+1,burns[m]+1),

’constant’, constant_values=(0,0))

autocorrs = (autocovs.T/autocovs[:,numsteps]).T
Finds first instance where |autocorrelation| < 1/e
decorrtimes = np.argmax(np.abs(autocorrs[:,numsteps:]) - np.exp(-1) < 0,

axis=1)

return autocorrs , decorrtimes

def heatcapacity(Ts, Es, burns):
"""
A very simple function that computes the lattice heat capacity
according to the fluctuation dissipation theorem. Makes use of the
function ’reducedvar’ to discard energies pre burn-in.
"""
varEs = reducedvar(Es, burns, axis=1)
C = varEs/Ts**2
return C

def threadedfunc(pipe, func):
"""
Very simple function to change a return command to a send-over-pipe
command for the argument ’function’.
"""
out = func()
if out is not None:

pipe.send((out))

def parallelise(functions):
"""
Function utilising multiprocessing to execute several ’functions’ in
parallel. Returns all of the arguments of the functions as a tuple.

19

Spawning pipes and processes can take about a second per process, so
there is no point parallelising routines that take ~1 sec.

Parameters

functions : iterable of callables

List or tuple of functions to execute, must be of the form func()
(no arguments), so use functools.partial if necessary.

Returns

returns : tuple

Tuple of returns of all the ’functions’ (which may themselves be
tuples).

"""
n = len(functions)
pipes = []
threads = []
for i in range(n):

pipes.append(multi.Pipe())
threads.append(multi.Process(name=’func %d’%(i), target=threadedfunc ,

args=(pipes[i][1], functions[i])))
threads[i].start()

try:
returns = list(range(n))
stillgoing = list(range(n))
while len(stillgoing):

for i in stillgoing:
if pipes[i][0].poll(0.1):

returns[i] = pipes[i][0].recv()
pipes[i][0].close()
threads[i].join()
stillgoing.remove(i)

time.sleep(0.01)
return returns

except Exception as e:
for i in range(n):

threads[i].close()
pipes[i][0].close()

raise(e)

20

	Introduction
	Background and approach
	Ising canonical ensemble
	Markov Chain Monte Carlo

	Implementation
	Preliminaries
	Implementing the Metropolis algorithm
	Random numbers
	Parallel processing
	Performance

	Observations and results
	Initial investigations
	Determining burn-in
	Temperature variation
	Non-zero magnetic field

	Conclusion
	Code
	Metropolis algorithm - Cython code
	A class to wrap Ising lattices

