
Condensation in porous media: a fractal analysis of avalanches

Jake Skelton, supervised by Dr. Sergei Taraskin

16th May 2022

Abstract

The random-field Ising model is the archetypical system for modelling phase transitions in disordered systems, and
it provided the first example of a disorder-induced critical point. More recently, analogous critical behaviour has been
discovered in the porous lattice gas model of condensation in a disordered medium. It is an open question whether
these two critical points are in the same universality class, as is the case for the conventional 3-dimensional Ising model
and the liquid-gas transition. Here, we investigate this possibility by calculating the fractal dimensions of the so-called
spanning avalanches that occur in the porous lattice gas transition; these dimensions are universal exponents. We
estimate that the volumetric fractal dimension of one type of spanning avalanche, known as subcritical 3-dimensional,
is 0.971 ± 0.003, in contradiction with previous estimates from the random-field Ising model, of 0.993 ± 0.007. There
remain, however, doubts about the validity of this number.

1 Introduction

Perhaps the most significant consequence of Wilson’s the-
ory of the renormalisation group (RG) [1] is to put on firm
ground previous notions that disparate physical systems
can display universal behaviour at a phase transition. The
RG approach, then, lies behind early ideas such as Landau
mean-field theory [2] and the ‘law of corresponding states’
for gas thermodynamics [3]. In modern terminology, phys-
ical systems with identical RG flow dynamics at the critical
point are said to lie in the same universality class. One of
the most well-studied universality classes is that compris-
ing three-dimensional systems with one-component fields;
both the ferromagnetic phase transition of the 𝑑 = 3 Ising
model and the liquid-gas transition are members of this
class.

Contemporaneously with the development of the RG,
researchers aiming to model the disorder present in real
systems invented the random-field Ising model (RFIM)
[4]. In this lattice model, each site has its own static field
drawn from a distribution; the fields are usually taken to be
Gaussian-distributed in magnitude and uncorrelated with
those on other sites. Much of the early interest in the RFIM
stemmed from the fact that random fields of any strength
are sufficient to prevent an ordered phase in all dimensions
𝑑 ≤ 2 [4, 5]; by contrast, the lower critical dimension of
the conventional Ising model is 𝑑𝑙 = 1.

More recently, Sethna and colleagues [6, 7] discovered
that the RFIM undergoes a first-order phase transition at
zero temperature which is qualitatively different depend-
ing on the variance of the random fields. For a small
variance, i.e. low disorder, a magnetised system subject to
an adiabatically-increasing external field reverses magneti-
sation direction in a single event, giving one large disconti-
nuity in the magnetic hysteresis curve. On the other hand,
a highly disordered system will track the applied field, and

reverse magnetisation in a continuous fashion. At an in-
termediate variance, discontinuities of all possible sizes
appear in the hysteresis curve, distributed according to a
power-law [6]. Although a first-order transition, this phe-
nomenon has been called a disorder-induced critical point
[8], and the discontinuities, named avalanches, spurred
further interest with their resemblance to the Barkhausen
noise that is familiar in experimental ferromagnetic hys-
teresis curves [9].

Given the correspondence between the conventional
Ising model and the liquid-gas transition, it is natural to
ask whether this correspondence survives the introduction
of disorder into both systems, and then, what is such a dis-
ordered fluid system? The leading answer to this question
is the condensation of vapour in a highly porous random
structure such as aerogel [10].

The object of this paper is to shed some more light
on the possibility of a universality class shared by the
disorder-induced phase transition in the RFIM, and the
liquid-gas transition in porous media. Our approach is to
analyse the geometry of avalanches in the latter transition,
using a scheme which we call the porous lattice gas model
(PLGM). Following this brief introduction, section 2 de-
scribes the PLGM, and discusses the theoretical ideas be-
hind avalanches in greater depth. In section 3, we outline
some of the details of how we simulate the dynamics of con-
densation. Section 4 is concerned with the methods used
to characterise the fractal geometry of avalanches, then
in section 5 we detail the results of this effort, alongside
general observations regarding the avalanches. Finally, we
discuss the implications of our findings in section 6 and
offer concluding remarks in section 7.
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2 Background
2.1 The model

Theoretical interest in modelling liquid-gas transitions in
porous media was spurred by early experimental work [11].
De Gennes [12, 13] was the first to cast the problem as one
of random fields, and Kierlik [14] was the first to propose
the Hamiltonian which we employ, and refer to throughout
this work as the porous lattice gas model:

H = − 𝑤mf
∑︁
⟨𝑖 𝑗 ⟩

𝜂𝑖𝜂 𝑗 𝜏𝑖𝜏𝑗 (1)

− 𝑤ff
∑︁
⟨𝑖 𝑗 ⟩

(
𝜏𝑖𝜂𝑖 (1 − 𝜂 𝑗) + 𝜏𝑗𝜂 𝑗 (1 − 𝜂𝑖)

)
(2)

where ⟨𝑖 𝑗⟩ refers to the set of nearest-neighbour pairs,
𝜂𝑖 ∈ {0, 1} is the fluid occupancy of site 𝑖, and 𝜏𝑖 ∈ {0, 1}
the matrix occupancy. Hence, the first sum in the Hamil-
tonian is over the matrix-fluid interactions, with 𝑤mf the
corresponding energy, and the second is over the attractive
(𝑤ff > 1) fluid-fluid interactions.

Any instance of the model is characterised by three ther-
modynamic variables. The wettability 𝑦 = 𝑤mf/𝑤ff is the
ratio of interaction energies. The porosity 𝜙 is the pro-
portion of sites not occupied by matrix. Finally, the total
number of fluid-occupied sites is not fixed, rather the model
is treated via a grand canonical ensemble, and the chemi-
cal potential 𝜇 defines the relationship between fluid in the
system and reservoir.

The standard mapping between the lattice gas and the
Ising model can be generalised in this case to [14, 15]

HIsing = −𝑤ff

4

∑︁
⟨𝑖 𝑗 ⟩

𝜂𝑖𝜂 𝑗 𝑠𝑖𝑠 𝑗 −
∑︁
𝑖

ℎ𝑖𝑠𝑖 (3)

with 𝑠𝑖 = 2𝜏𝑖 − 1, and the random on-site field

ℎ𝑖 = 𝜇/2 + 𝑤mf𝜁𝑖 + 𝑤ff(𝑧/2 − 𝜁𝑖) (4)

where 𝑧 is the coordination number of the underlying lat-
tice, and 𝜁𝑖 is the number of matrix sites bordering site
𝑖. For any realistic model of a porous lattice, 𝜁𝑖 is a ran-
dom quantity, and so the matrix gives the system quenched
disorder.

Superficially, the above mapping looks to produce the
RFIM, but the constant offset of ℎ𝑖 means this is not so [16].
The RFIM features zero-centred on-site fields with no site-
site correlation [5], and consequently a symmetry in the
Hamiltonian, which the above mapping fails to reproduce.
It is for this reason that the correspondence between the
PLGM and the RFIM, if it exists, is non-trivial.

2.2 Avalanches in the PLGM

It did not take long [17] for the characteristic features of the
disorder-induced phase transition in the RFIM, as outlined
in section 1, to be recognised in the first-order liquid-gas

Fig. 1: Representative examples of isotherms a) below and
b) above the critical disorder, in the porous lattice gas model.
Note that the former is dominated by a single large avalanche,
and the latter includes several small avalanches. In the ther-
modynamic limit, these behaviours tend to a single disconti-
nuity, and a smooth curve.

transition of the PLGM. The relevant order parameter, in
this case, is the fluid concentration 𝜌 rather than the mag-
netisation; the applied field is replaced by the chemical
potential 𝜇, and the disorder by the pair of parameters
porosity 𝜙 and wettability 𝑦. A physical explanation for
the dual behaviour either side of the critical disorder is
straightforward for the PLGM. For a low-disorder, highly
porous system, there is little preventing long-range correla-
tion between sites; condensation of fluid at one site quickly
cascades from nearest neighbours outward. For the highly-
disordered system, the increased density of matrix impedes
long-range correlation between sites: an avalanche can
only spread to its immediate vicinity. From an energy per-
spective, the low-porosity system is like a spin glass [18,
19], its energy landscape consists of many metastable lo-
cal minima. Smooth increase of the magnetisation as 𝜇

is increased corresponds to the location of the currently-
occupied minimum changing; avalanches correspond to a
discontinuous shift from one local minimum to a lower
one, when the energy difference passes some threshold.

The number of avalanches involved in a transition, and
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their size, obey scaling relations near the critical point [7,
8], and are associated with a set of critical exponents. In
this work, we are concerned with the fact that one way
of combining the critical exponents yields the fractal di-
mension of the avalanches [7, 20]. A brief introduction to
fractal geometry, along several authoritative references, is
given in section 2.4. Because it can be written in terms of
other critical exponents which appear in a renormalisation
group analysis [8], 𝑑 𝑓 is a bona-fide critical exponent that
is characteristic of the universality class to which the RFIM
belongs.

2.3 Spanning avalanches

In a simulation of a system with a finite number of sites 𝑁 ,
with periodic boundary conditions, there is a distinction to
be made between avalanches which reach from one side of
the system to the other, and those which can be comfortably
contained within the system size. The former are referred
to as spanning avalanches. In the thermodynamic limit
𝑁 → ∞, spanning avalanches represent an event where
an infinite number of spins flip, whereas non-spanning
avalanches remain finite as 𝑁 → ∞ [8]. In fact, in the
thermodynamic limit, there is a single infinite avalanche
below the critical disorder, 𝑅 < 𝑅𝑐, only finite avalanches
above 𝑅𝑐, and an infinitude of infinite avalanches at the
critical disorder [7, 8, 21].

In this work, we refer to an avalanche that spans one
pair of opposite faces of the system, as a ‘1-dimensional’
spanning avalanche; an avalanche that spans two pairs
of opposing faces is ‘2-dimensional’, etc. Pérez-Reche
and Vives [21, 22] have proposed that the single subcrit-
ical infinite avalanche that appears in the thermodynamic
limit is obtained only from the limit of a subset of the 3-
dimensional spanning avalanches encountered in finite sys-
tems, which they call ‘subcritical 3-dimensional spanning
avalanches’; in this paper, they are denoted 3<. The remain-
der of the spanning avalanches, which include 1-, 2-, and
3-dimensional types, produce the infinitude of avalanches
at the critical point as 𝑁 → ∞. They are referred to as
‘critical’ spanning avalanches and here denoted 1*, 2*, and
3*, respectively. The above classifications of avalanche are
the basis upon which results are divided throughout the rest
of this paper, so they are given for reference in table 1.

In other words, the finite-size scaling (FSS) analysis in
[21, 22] implies that the distribution of 1*, 2*, and 3*
avalanches tends to 𝛿(𝑅 − 𝑅𝑐) as 𝑁 → ∞, whereas that of
3< tends to the step function Θ(𝑅− 𝑅𝑐). A plot illustrating
this is reproduced from [22] in fig. 2. To the author’s
knowledge, no analogous FSS procedure distinguishing
the distribution of avalanche types has been rigorously
carried out for the PLGM, and the difficulties involved
have been pointed out by previous authors [23]. In this
work therefore, we adopt Peréz-Reche’s classification of
avalanches as a working hypothesis, and it will be found
that the qualitative features of avalanches in the PLGM do

indeed conform to this scheme.

1* 1-dimensional spanning avalanches
2* 2-dimensional spanning avalanches
3* 3-dimensional, critical spanning avalanches
3< 3-dimensional, subcritical spanning avalanches

Table 1: Abbreviations for various types of spanning
avalanche, following [22].

Fig. 2: Scaling collapse to the hypothesised distributions for
the number of a) 3< and b) 3* spanning avalanches (in our
notation). For the purposes of this paper, the horizontal axis
represents a (scaled) distance from the critical disorder 𝑢 = 0,
and the vertical axis the scaling function for the distribution of
each type of avalanche. Reproduced from [22].

2.4 Fractals

The concept of a fractal was devised almost entirely by
Mandelbrot, building on some disparate work by early 20th
century mathematicians [24]. The two loose definitions of
a fractal, which are equivalent when expressed more for-
mally are i) a fractal is an object with structure, or detail
on all lengthscales; ii) a fractal is an object with a scaling
dimension greater than that possessed by conventional ob-
jects with the same topology, but smaller than that of the
embedding space [25]. This fractal dimension is frequently
non-integral.

The resemblance of fractals to real objects was always
an impetus for their development [24], and their utility
for characterising physical systems was realised early by
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researchers [26]. Fractal ideas are particularly prominent
in the computational literature, for example in studies of
percolation [27], diffusion-limited aggregation [28], and
chaos [29]. Additionally, the divergence of the correlation
length at a critical point leads to statistically self-similar
structures which are well-suited to fractal analysis [30].

Formally, there are many different fractal dimensions,
but they coincide in many cases. The most important is
the Hausdorff dimension [31, 32]. In this work, we use the
mass dimension, a precise definition of which requires, like
many concepts in fractal geometry, a certain amount of set
theory. Loosely, however, if F is a (potentially fractal) set,
{U 𝑗} is a cover of F , and 𝜇 is a measure (subject to some
constraints), then the mass dimension relates the measure
𝜇(U 𝑗) of anyU 𝑗 to its diameter (in the set-theoretic sense).
Crucially for our purposes, while this definition requires
there to be a metric on U 𝑗 , there is no need for F to be a
subset of Euclidean space R𝑛. For a proper exposition, the
reader is urged to consult [33] and the references therein.

3 Simulation
The results reported in this work were obtained by simu-
lating the PLGM on 𝐿 × 𝐿 × 𝐿 body-centred cubic (BCC)
lattices of linear sizes 𝐿 = 20, 30, 40, 50, 60, and 80.
Previous analysis by Dr Taraskin has suggested the point
𝜙 = 85%, 𝑦 = 1.03 in the porosity-wettability plane is close
to the critical line, and these values are used throughout
this work.

3.1 Creating the matrix

The aerogel matrix, which provides the quenched disorder,
was realised using a diffusion-limited cluster aggregation
(DLCA) [34, 35] algorithm with an enforced, user-chosen
porosity. The code for this algorithm was written by S.
Niblett and the procedure detailed in a previous report∗[36]
and we direct the reader there for further information. For
the purposes of this work, it suffices to say that the DLCA
algorithm creates a random matrix configuration each time
it is executed. Then, we calculate one condensation event
(upward branch of the isotherm) per configuration; repeat-
ing with a greater number of random initialisations of the
matrix leads naturally to better statistics. In this work for
𝐿 = 20, 30, 40, 50, 60, and 80 systems we have performed
simulations using 6000, 20 000, 25 000, 18 000, 18 000 and
3000 random matrix configurations, respectively.

3.2 Calculating condensation dynamics

For a given chemical potential, we then solve for the
ground state of the system using the long-established
(though perhaps lesser-known) mapping between ground
state determination for certain lattice Hamiltonians, and
the minimum-cut optimisation problem from the theory of
network flows [38, 39]. Briefly, this is the problem of

∗References [36] and [37] are previous student project reports and
are uploaded as material supplementary to this report.

bi-partitioning a weighted graph with a ‘cut’ made of con-
tiguous edges such that a) two particular nodes end up on
opposite sides of the partition, and b) the weights of the
edges used in the cut sum to a minimal value. For a 𝑑-
dimensional lattice of two-state sites, the minimum-cut is
a boundary in 𝑑 + 1 dimensional space, and its intersection
with 𝑑-space gives the ground-state domain walls. In prac-
tice, the minimum-cut can be found using one of several
algorithms which invoke the maximum-flow/minimum-cut
theorem [40], a key result of network flow theory; we use
an algorithm due to Boykov and Kolmogorov [41]. The
specifics of applying the max-flow/min-cut theorem to the
PLGM were implemented by R. Cepitis and detailed in an
earlier work [37]. For more information on the general
application of network flow theory to ground-state deter-
mination, the reader is referred to the excellent review by
Alava et al. [39].

In order to build up the isotherm and find the avalanches,
which manifest as discontinuities, one could simply sam-
ple a suitable interval in 𝜇 with a fixed step-length 𝛿𝜇.
However, this is wasteful when evaluating at several values
of 𝜇 that all correspond to a plateau in 𝜌, for example at
the start and end of the curve. Instead, we follow [23] and
use a form of binary search that recursively halves an inter-
val in 𝜇 and evaluates 𝜌 at the start-, end- and midpoints.
A half-interval is discarded from the recursion if Δ𝜌 = 0
across it, and the recursion finishes once intervals reach a
pre-specified step length 𝛿𝜇. In this way, the isotherm is
only finely sampled where necessary.

If one solves for the ground state of the system imme-
diately before and after a discontinuity in 𝜌, then finds the
differential in fluid occupation of each site in the system, the
result is the spatial representation of the avalanche. Rep-
resentative examples of such avalanche shapes are shown
in figs. 4 and 5.

3.3 Classifying avalanches

In order to determine, in practice, whether a 3-dimensional
spanning avalanche is critical or subcritical, we follow
the method of Pérez-Reche in [22]. In the RFIM it was
found, through combining other critical exponents, that 3<

avalanches have a fractal dimension close to the spatial
dimension 𝑑 = 3, and thus occupy a large fraction of the
system, whereas the dimension for 3* avalanches is smaller.
This makes intuitive sense if 3* avalanches are to coexist
with other spanning avalanches at the critical point, in the
thermodynamic limit. This fact suggested the following
classification scheme, used in [22]: if any other spanning
avalanches occur on the same isotherm as a 3D spanning
avalanche, that avalanche is critical, 3*, otherwise, if it is
alone, it is 3<. The extent to which this scheme is justified
for our studies of the PLGM will be discussed in section 6.2
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4 Fractal analysis
To estimate the fractal dimension of an avalanche starting
from its spatial representation, we use the well-established
sandbox algorithm [26]. The fortran code used to imple-
ment it is provided in appendix B, and here we shall outline
some of the practicalities of applying the algorithm.

4.1 The sandbox algorithm

The sandbox method for estimating fractal dimension is
based simply on the definition of the fractal scaling. That
is, for an object contained within a 𝑑-volume 𝑉 , the mass
𝑀 (in a generalised sense) in a smaller volume 𝑣 obeys

𝑀 (𝑣) =
( 𝑣
𝑉

)𝑑 𝑓 /𝑑
𝑀 (𝑉)

≡ 𝑀0𝑣
𝑑𝑣

(5)

where 𝑑 𝑓 is the fractal dimension of the object, 𝑀0 is a
constant and 𝑑𝑣 = 𝑑 𝑓 /𝑑 is a quantity we refer to as the
volumetric fractal dimension. The above expression is a
slight rearrangement of that seen typically [24, 26] because
applying the sandbox method to avalanches in the PLGM
is complicated significantly by the presence of the matrix.
The approach we adopt in this work, and the key deviation
from the sandbox method, as usually applied, is as follows.
0. Consider a 𝐿 × 𝐿 × 𝐿 system with a BCC lattice, so

that there are 𝐿3 unit cells, each with 2 sites. Define
A as the set of all fluid sites ®𝑥 ∈ A that comprise the
avalanche, and define L = 1, 2, ..., 𝐿 as the set of all
integers between 1 and 𝐿.

1. Select a site ®𝑥 from A.

2. Select a value 𝑙 from L. Draw a 𝑙 × 𝑙 × 𝑙 ‘bounding-
box’ centred on ®𝑥, which may wrap around the periodic
boundaries.

3. Calculate the number of fluid sites 𝑛(®𝑥; 𝑙), and the num-
ber of non-matrix, ‘pore’ sites 𝑣(®𝑥; 𝑙) in the bounding-
box.

4. Repeat steps 2-3 for all box sizes 𝑙 ∈ L.

5. Repeat steps 1-4 for all avalanche sites ®𝑥 ∈ A.

6. Let X𝑣′ be the set of all (®𝑥, 𝑙) pairs such that 𝑣(®𝑥; 𝑙) =
𝑣′.

7. For every encountered ‘sandbox size’ 𝑣, output the
average fluid occupation,

�̄�(𝑣) ≡ 1
|X𝑣 |

∑︁
( ®𝑥,𝑙) ∈X𝑣

𝑛(®𝑥; 𝑙). (6)

Using eq. (5), the expectation is then that �̄�(𝑣) scales as
𝑣𝑑𝑣 . The key differences between this method and the usual
incarnation of the sandbox method is that we investigate
the scaling with a volumetric quantity 𝑣 rather than a linear
quantity, and these volumes are not pre-defined but are

discovered at ‘run-time’. The reason for the deviation is
that the pore space in which an avalanche is embedded
is highly non-trivial, and we must account for the fact that
matrix sites are unavailable for the growth of the avalanche.

In practice, the objects central to the algorithm are two
𝐿 × 𝐿 × 𝐿 arrays containing, respectively, the fluid occu-
pation, and the matrix occupation of each unit cell (with
each element being 0, 1, or 2 due to the BCC lattice). The
nested loop structure of the algorithm means step 3, which
performs a sum over a 𝑙× 𝑙× 𝑙 slice of both arrays, is visited
a great many times. It was realised that the static nature of
the occupation arrays can be leveraged to accelerate these
sums. The technique used relies on the integral image con-
struction from the image processing literature [42–44]. A
detailed description is given in appendix A, but the concept
is totally analogous to the use of a cumulative distribution
function to save the effort of integrating a probability den-
sity function. In the end, a sum of 2𝑙3 integers per iteration
was reduced to seven integer additions per iteration, plus
the constant-time evaluation of the integral image itself.
Altogether, this decreases the scaling of execution time
with system size from O(𝐿4+𝑑 𝑓 ) to O(𝐿3).

4.2 Scaling collapse

We will observe later in this work that finite-size effects
impinge upon the expected power-law fractal scaling as 𝑣
approaches the system size 𝐿3. Fitting a power-law, and
especially a truncated one, is fraught with difficulties in
any case [45, 46], and so the choice was made to determine
the asymptotic scaling behaviour using scaling collapse.
This is a well-established technique [47], and so we shall
explain it only briefly. Equation (5) is truly only valid in
the thermodynamic limit of an infinite fractal. Away from
this limit, it must be generalised to the finite-size scaling
form [21, 48, 49]

𝑛(𝑣) = 𝑉𝑑𝑣 𝑓𝑛 (𝑣/𝑉) (7)

where 𝑓𝑛 is a universal scaling function. This means that
eq. (7) holds for a simulated PLGM of any size and any
pair of 𝑦 and 𝜙 that tune the model to the critical point.
In particular, if one plots numerical results for 𝑛(𝑣) as
𝑉−𝑑𝑣𝑛(𝑣) versus 𝑣/𝑉 , then the various datasets should all
‘collapse’ to lie on a single curve. Figures 7 and 8 should
illustrate this idea more clearly.

In order to obtain the parameter-set that yields best
collapse (in a quantitative sense), various heuristic cost-
functions have been developed [50–52], which all have
the formidable task of evaluating the mutual displacement
of scaling curves that have been only discretely sampled,
at locations and sample-densities that do not coincide in
general. In this work, we use the cost-function due to Hou-
dayer and Hartmann [52], which is a modification of that
due to Kawashima and Ito [50]. For more detail the reader
should consult [52], but the general idea is as follows. For
every possible point 𝑃 from every dataset, compute the
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residual between 𝑃 and a straight line segment fit to the
immediate neighbours of 𝑃 from all other datasets. The
residual is scaled by the error in 𝑃 and in the linear fit, and
then summed together with all other such scaled residuals
(controlling for the number of terms) to form a scalar ‘qual-
ity’ of collapse, 𝑄. Minimising 𝑄 will therefore find the
parameter-set that optimises collapse, but, by analogy with
the 𝜒2 test [53], 𝑄 ≪ 1 is suspect and implies oversized
errors.

In this work, we apply 𝑄 [(𝑛, 𝑣); 𝑑𝑣] to a brute-force
search over a pre-defined vector of 𝑑𝑣 values. The 𝑑𝑣
that minimises 𝑄 (subject to the resolution of the initial
vector) is taken as our estimate of the scaling exponent,
and the ‘half-width at half-minimum’ (HWHM) is used as
a heuristic for the error on the estimate. The code for this
procedure was provided by Dr Taraskin.

Fig. 3: Distribution of sizes of 61 214 spanning avalanches
recorded in 60 000 realisations of a 𝐿 = 20 system. Each plot
has superimposed (in grey) the distribution of all types of span-
ning avalanche, alongside a) 1*, b) 2*, c) 3*, d) 3<. Note the
logarithmic scale of the vertical axis. The very largest recorded
avalanches for types 1*, 2*, and 9* are 4750, 7764, and 6033,
respectively.

5 Results

5.1 Observations

Computing the system state using max-flow/min-cut tech-
niques identifies all sites involved in an avalanche, and
allows us to visualise the avalanches themselves. Figures 4
and 5 show representative examples of 1* and 2*, and type
3* and 9* avalanches, respectively. Their fractal nature
is intuitively clear. It is also evident that 3< avalanches
are qualitatively different from other spanning avalanches:
informally, the former are defined more by those sites that
are not occupied, with the latter defined by than those that
are.

5.2 Distribution of avalanches

The distribution of spanning avalanche sizes is distinctly
bimodal, as illustrated in fig. 3 for 𝐿 = 20 systems. Clas-
sification of the avalanches allows the distribution to be
decomposed: critical spanning avalanches, predominantly
1* and 2* are responsible for the peak at smaller sizes,
and 3< are solely responsible for it at larger sizes. This is
not a totally trivial finding; although it is more likely for
a smaller object to intersect fewer system boundaries, we
do not, for example, find a single 1* or 2* avalanche that
contributes to the peak at large sizes, among 60 000 𝐿 = 20
systems.

5.3 Scaling collapse

As remarked upon by previous authors dealing with the
RFIM [21], the variability among avalanches is enormous.
Figure 6 shows the scaling of fluid volume 𝑛(𝑣) versus
pore-space ‘sandbox volume’ 𝑣 for the 𝐿 = 20 dataset. The
point clouds involved overlap to a significant extent in 𝑛,
whereas the individual contributions from each bounding
box are distinct in 𝑣. Evidently, the DLCA procedure
ensures that, the fraction of any given volume occupied by
matrix is governed by some distribution, centred around
1 − 𝜙; for 𝜙 = 85%, this distribution is narrow.

In order to make the data amenable to scaling collapse,
the data corresponding to each of the 𝐿 bounding boxes
were averaged in 𝑛 and 𝑣. This gave us seven datasets
(one for each simulated system size) with which to per-
form scaling collapse, for each of the four types of span-
ning avalanche. The results of the procedure outlined in
section 4.2 are shown in figs. 7 and 8. With the notable
exception of 1* and 2* avalanches in 𝐿 = 20 systems, the
collapse is very good. On the logarithmic plots, finite-size
effects, which manifest as a ‘knee’ in the curve, are par-
ticularly evident for 1* and 2*. The linear plot of scaling
for 3< avalanches is nearly straight; a linear relationship
between 𝑛(𝑣) and 𝑣 would imply 𝑑𝑣 = 1, and a compact,
rather than fractal, object.
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Fig. 4: Visualisations of representative 1* (above) and 2* (be-
low) avalanches in a 𝐿 = 80 system. Each voxel (3D pixel)
represents one (singly or doubly) occupied unit cell in the BCC
lattice. Unit cells are coloured on a linear scale from dark grey
to white based upon their 𝑧-coordinate, to aid the eye. What
appear to be stranded ‘islands’ of fluid are in fact connected to
the main edifice under periodic boundary conditions.

Fig. 5: Visualisations of representative examples of the two 3-
dimensional spanning avalanches, 3* (above) and 3< (below),
here in a 𝐿 = 80 system. Each voxel (3-dimensional pixel)
represents one (singly or doubly) occupied unit cell in the BCC
lattice. Unit cells are coloured on a linear scale from dark grey
to white based upon their 𝑧-coordinate, to aid the eye. The 3*
avalanche is quite obviously more diffuse than the 3<. It should
be noted that this figure does not indicate which of those non-
fluid sites are free, and which are occupied by matrix.
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Fig. 6: Raw volume scaling output of the sandbox procedure
applied to 4570 1* avalanches from 𝐿 = 20 systems. The plot
is a histogram with 2000×2000 linearly-spaced bins, the occu-
pation of each bin is indicated using a logarithmic colour scale
such that all bins exceeding the mean occupation by more than
five standard deviations are coloured black. Note the broad
distribution of fluid occupations 𝑛 of each sandbox, and the
fact that the distributions stemming from each ‘bounding-box’
are distinguishable. The distribution corresponding to the final
bounding box, of size 203, is not shown in order to preserve
the dynamic range of the colouring.

The numerical results of the scaling collapse are col-
lected in table 2. Also included are the fractal dimensions
for the four types of avalanche in the RFIM, reported by
Pérez-Reche and Vives in [21, 22], re-expressed as vol-
umetric, rather than linear, scaling exponents. The im-
plications of these findings will be discussed in depth in
section 6, and here we restrict the analysis to the following
remarks. To within error, estimates of 𝑑𝑣 for avalanches
of type 1* and 2* are consistent both with each other,
and with the corresponding exponents in the RFIM. The
3-dimensional avalanches have estimated exponents con-
sistent with each other, which is not the case for the RFIM,
and neither 3* nor 3< have 𝑑𝑣 estimates in agreement with
the RFIM values.

Aval. type Dimension, 𝑑𝑣 Quality RFIM value [22]
1* 0.95 ± 0.02 9.61 0.93 ± 0.02
2* 0.93 ± 0.02 13.38 0.93 ± 0.02
3* 0.96 ± 0.01 1.03 0.93 ± 0.02
3< 0.971 ± 0.003 51.32 0.993 ± 0.007

Table 2: Results of the scaling collapse for volumetric fractal
scaling, along with the ‘quality’ of the collapse as defined in
section 4.2, and the corresponding fractal dimensions for the
RFIM, from [22]. The error in 𝑑𝑣 is simply the half-width at half-
minimum of the collapse cost function 𝑄 [𝑑𝑣]. The values for
the RFIM reported in [22] are for scaling with linear resolution,
so they are presented here divided by the spatial dimension,
3.

Fig. 7: Scaling collapse for fluid occupation 𝑛(𝑣) of a porous
sandbox versus sandbox volume 𝑣, using eq. (7). The plots,
on a logarithmic scale are for a) 1*, b) 2*, c) 3*, and d) 3< span-
ning avalanches. The six datasets for the six system sizes are
indicated with the marker shape: 𝐿 = 20 are represented by
diamonds, the remainder by the corresponding 𝐿-sided poly-
gon. The error bars on each datum are shown for complete-
ness.
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Fig. 8: Scaling collapse for fluid occupation 𝑛(𝑣) of a porous
sandbox versus sandbox volume 𝑣, using eq. (7). The plots
are for a) 1*, b) 2*, c) 3*, and d) 3< spanning avalanches. In
contrast to fig. 7, linear axes are used here. The six datasets
for the six system sizes are indicated with the marker shape:
𝐿 = 20 are represented by diamonds, the remainder by the
corresponding 𝐿-sided polygon. The error bars on each datum
are shown for completeness.

6 Discussion

The principle question driving this work is this: do the
disorder-induced phase transitions of the random-field
Ising model and the porous lattice gas model share a uni-
versality class? Identical avalanche fractal exponents are
a necessary condition for the renormalisation group dy-
namics to be the same at the critical point, though not a
sufficient condition because the other critical exponents
offer further degrees of freedom [1].

As it is, our situation is less clear cut than an affirmation
or a refutation of universality for the two models. The
estimates for exponents 𝑑𝑣 (1∗) and 𝑑𝑣 (2∗) appear consis-
tent with those for the RFIM, but the errors involved, for
both models, are too large to make any firm statements.
Concerning the 3-dimensional spanning avalanches, if i)
the hypothesis that there are two fundamentally different
types of 3-dimensional avalanche applies to the PLGM,
and ii) if the method used in this work to distinguish them
is correct, then the precision of the estimates of 𝑑𝑣 (3∗) and
𝑑𝑣 (3<), for both models, is sufficient to preclude a shared
universality class for the disorder-induced critical points of
the PLGM and the RFIM. However, if one or both of the
conditions, (i) and (ii), are not met, then the exponents cal-
culated for the PLGM are invalid and no firm conclusion
can be drawn regarding universality. In the author’s view,
both conditions require further scrutiny.

6.1 Uncertainty

Much of the advice regarding the use of the sandbox
method in the literature [26] suggests the use of as many
sites in the fractal object as possible as centres for the
drawing of sandboxes (or bounding-boxes, in our modified
approach). The motivation is to collect as large a sample as
possible for good statistics. There is perhaps a balance to
be struck here. We found that using every fluid-occupied
site in the avalanche led to significant non-independence of
the data; the largest bounding-boxes drawn from one site
overlap with those of almost every other site in the sys-
tem. This led to the error-on-the-mean for the averaging
described in section 5.3 being unphysically small if cal-
culated using standard techniques assuming independent
data. It was chosen to treat all the, say, 𝑁 records for a
given sandbox size 𝑣 coming from a single matrix con-
figuration as one datum, rather than 𝑁 data, to overcome
the problem. A more rigorous technique, perhaps using
a random sample of origin sites per avalanche, should be
sought for future analysis.

Besides this, a future direction to obtain greater precision
would be the inclusion of not only more system realisations,
but also larger systems, as these are less susceptible to the
finite-size effects that so necessitate the scaling collapse
technique. The deviation of the 𝐿 = 20 dataset in fig. 8 is
perhaps in support of this.
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6.2 Dichotomy of 3-dimensional avalanches

Pérez-Reche and Vives [22] presented strong evidence for
their hypothesis of two varieties of 3-dimensional span-
ning avalanche using a FSS analysis. Fig. 10 from [22],
depicting a scaling collapse of data to their hypothesised
scaling form is reproduced in fig. 2. The dual sigmoid, and
unimodal behaviour expected is replicated in the data using
only exponents extracted from fitting 1* and 2* avalanche
statistics. Further, the authors were able to estimate the
fractal dimensions of 3* and 3< avalanches by combin-
ing other scaling exponents, before conducting more tradi-
tional fractal scaling techniques.

In contrast, no such scaling analysis exists in the PLGM
literature, to the author’s knowledge. Without such an
a priori indication of the need to distinguish two sets of
3-dimensional avalanches, the method outlined in sec-
tion 3.3 is discomfortingly close to a tautology; in [21],
3< avalanches are posited to be large to the point of exclu-
sivity based only on their known, larger fractal dimension.
As it happens, our 𝑑𝑣 (3∗) estimate is not precise enough
to support such an a priori hypothesis that it differs from
𝑑𝑣 (3<).

7 Conclusion
To conclude, we have estimated the fractal scaling ex-
ponents of spanning avalanches in the porous lattice gas
model and compared these values to the best estimates for
avalanches in the random-field Ising model. Doubts re-
garding whether it is valid to apply classification schemes
developed for RFIM avalanches to those in the PLGM pre-
vent us from concluding firmly that the two sets of fractal
dimensions are, or are not consistent.

Further work is thus required to interrogate the qualita-
tive subsets of spanning avalanches in the PLGM and, in
particular, how the distribution of such subsets will behave
in the thermodynamic limit. An analytical treatment with
RG methods would be the most convincing approach.

However, should the hypothesis of a dichotomy of 3-
dimensional avalanches be validated, and if the method to
distinguish them used in this work is appropriate, then our
scaling exponent for subcritical 3-dimensional spanning
avalanches, 0.971 ± 0.003, appears incompatible with that
from the RFIM, 0.993 ± 0.007. In the absence of error,
this would rule out a universality class shared by the RFIM
and the PLGM.

Word count = 4815

A 3-dimensional integral images
As remarked in section 4, the relationship between an

array (or image in the historic terminology) and an
integral image (II) is entirely analogous to that between a
probability density function and a cumulative distribution
function [42]. Each element of the II correspond to the

sum over a particular region of the array, so that
performing arithmetic with elements of the II is

equivalent to summing a subset of the elements of the
array. If one needs to perform several such sums over the
array, then there comes a point where it is more efficient
to first compute an II, then use it to do the arithmetic. As

the name indicates, integral images were originally
devised for 2-dimensional arrays, but they can be

generalised to n-dimensions [44]. We shall restrict this
exposition to three dimensions.

Firstly, we define an II and show how it can be used to
compute the sum over any cuboid section of a

3-dimensional array. Then, we give an efficient method
for creating an II using one pass over the original array.

Let 𝐴 be a rank-3 array of shape (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧); let 𝐼 be the
corresponding integral image, which is one element larger

than 𝐴 in each direction,
shape(𝐼) = (𝑛𝑥 + 1, 𝑛𝑦 + 1, 𝑛𝑧 + 1). 𝐼 is defined such that

𝐼𝑖 𝑗𝑘 =

𝑖∑︁
𝑖′=1

𝑗∑︁
𝑗′=1

𝑘∑︁
𝑘′=1

𝐴𝑖′ 𝑗′𝑘′ for non-zero 𝑖, 𝑗 , 𝑘 (8)

and 𝐼𝑖 𝑗𝑘 = 0 if any of 𝑖, 𝑗 , 𝑘 are zero. Note that, under this
definition, 𝐴 is 1-referenced, and 𝐼 is 0-referenced. This

subtlety has a justification.
This then implies that the sum over a 𝑚𝑥 × 𝑚𝑦 × 𝑚𝑧 slice

of 𝐴 is

𝑖+𝑚𝑥∑︁
𝑖′=𝑖

𝑗+𝑚𝑦∑︁
𝑗′= 𝑗

𝑘+𝑚𝑧∑︁
𝑘′=𝑘

𝐴𝑖′ 𝑗′𝑘′ =

+ 𝐼𝑖+𝑚𝑥 , 𝑗+𝑚𝑦 ,𝑘+𝑚𝑧

− 𝐼𝑖+𝑚𝑥 , 𝑗+𝑚𝑦 ,𝑘 − 𝐼𝑖, 𝑗+𝑚𝑦 ,𝑘+𝑚𝑧
− 𝐼𝑖+𝑚𝑥 , 𝑗 ,𝑘+𝑚𝑧

+ 𝐼𝑖+𝑚𝑥 , 𝑗 ,𝑘 + 𝐼𝑖, 𝑗+𝑚𝑦 ,𝑘 + 𝐼𝑖, 𝑗 ,𝑘+𝑚𝑧

− 𝐼𝑖 𝑗𝑘 .

(9)

Finally, the procedure we use to generate 𝐼 is

𝐼𝑖+1, 𝑗+1,𝑘+1 = + 𝐴𝑖+1, 𝑗+1,𝑘+1

+ 𝐼𝑖+1, 𝑗+1,𝑘 + 𝐼𝑖, 𝑗+1,𝑘+1 + 𝐼𝑖+1, 𝑗 ,𝑘+1

− 𝐼𝑖+1, 𝑗 ,𝑘 − 𝐼𝑖, 𝑗+1,𝑘 − 𝐼𝑖, 𝑗 ,𝑘+1

+ 𝐼𝑖 𝑗𝑘 .

(10)

In fact, eq. (10) is not the conventional expression; it
requires slightly more additions but is more

memory-efficient and, we feel, easier to intuit because of
its similarity to eq. (9). The earlier insistence that 𝐼 be

larger than 𝐴 and that 𝐼0 𝑗𝑘 = 𝐼𝑖0𝑘 = 𝐼𝑖 𝑗0 = 0 is not strictly
necessary, but it ensures eq. (10) is unambiguous for all

𝑖, 𝑗 , 𝑘 .
Except where specific reference is made to the work of others,
this work is original and has not been already submitted either
wholly or in part to satisfy any degree requirement at this or

any other university.
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B Code
B.1 Wrapper program

! Filename: /home/jake/Documents/Project/avalanche_fractal_analysis/main.f95
! Path: /home/jake/Documents/Project/avalanche_fractal_analysis
! Created Date: Monday, November 15th 2021, 12:11:58 am
! Author: Jake Skelton

! Copyright (c) 2021 Jake Skelton

! IO wrapper for sandbox analysis. Takes list of fluid coordinates involved in ! avalanche , and matrix coordinates for given config, then passes these as
! ’occupation arrays’ to sandbox.f95, which does the legwork. Then, this program
! also handles outputting results to the outfile.
! Calling procedure:
! main <f_file> <mat_file> <lmax> <outfile> [options]
! Dictionary:
! <f_file >: Input file path, containing fractal coordinates
! <mat_file >: File path for matrix coordinates (complementary representation)
! <lmax>: System size
! <outfile >: Output file path, will get average masses and dimension written
! to it. If output not desired, use dev/null
! [options]: Remaining flags:
! [sample size] - Any numeric value following <outfile> will
! be interpreted as the percentage of sites in the
! avalanche to use in the random sample of origins.
! Must include a decimal point.
! Passing ’100.0’ is equivalent to leaving absent
! v - verbose mode

module input_output
implicit none

contains

integer*8 function get_file_length(file)
! Simple function to run through all the lines of a file and count them

character(256), intent(in) :: file
integer, parameter :: fu = 100
integer :: filestatus = 0
integer*8 :: lines = 0

open(unit=fu, file=file, status=’old’, action=’read’)

do
read(fu, *, iostat=filestatus)
if (filestatus /= 0) exit ! Stop at EOF
lines = lines + 1

end do
close(fu)

get_file_length = lines

end function get_file_length

subroutine read_coords(file, length, D, arr, coords)

character(256), intent(in) :: file
integer*8, intent(in) :: length
integer, intent(in) :: D
integer, intent(out) :: arr(D, D, D)
integer, intent(out) :: coords(length, 3)

character(256) :: err
integer, parameter :: fu = 200 ! File unit variable
real*8 :: x, y, z
integer*8 :: i
integer :: intco(3), flag, filestatus
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open(unit=fu, file=file, status=’old’, action=’read’, iostat=flag, &
iomsg=err)

if (flag /= 0) write(*,*) err

arr = 0
do i = 1, length

read(fu, *, iostat=filestatus) x, y, z
if (filestatus /= 0) exit ! Stop at EOF

! Simple cubic --> BCC & start from 1
intco = floor([x, y, z]) + 1
arr(intco(1), intco(2), intco(3)) = &

arr(intco(1), intco(2), intco(3)) + 1
coords(i,:) = intco

end do
close(fu)

end subroutine read_coords

character(256) function filefrompath(filepath)
! From path "parent_directory/file.ext" extract just "file.ext"
! NB Unix slash

character(256) :: filepath
integer :: marker

marker = index(filepath , ’/’, back=.true.)
filefrompath = trim(filepath(marker+1:))

end function filefrompath

integer*8 function codefromfile(filename)
! Slurp all the numeric characters out of an input string, and turn them
! into a big integer, preserving their order

character(256), intent(in) :: filename

character(256) :: numstring
integer :: i, j

j = 0
do i = 1, len_trim(filename)

if (lle(’0’, filename(i:i)) .and. lle(filename(i:i), ’9’)) then
j = j + 1
numstring(j:j) = filename(i:i)

end if
end do
read(numstring(:j), ’(i8)’) codefromfile

end function codefromfile

subroutine random_sample(arr, seed, outarr)

integer, intent(inout) :: arr(:,:)
integer*8, intent(in) :: seed
integer, intent(out) :: outarr(:,:)

integer :: seed_size
integer*8 :: asize, oasize, i, j
integer, allocatable :: temp(:), seed_array(:)
real*8, allocatable :: trials(:)

asize = size(arr, 1)
oasize = size(outarr, 1)
allocate(temp(size(arr, 2)), trials(asize))

! Make random numbers
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call random_seed(size=seed_size)
allocate(seed_array(seed_size))
seed_array = seed
call random_seed(put=seed_array)
call random_number(trials)

! Trim arr down to outarr by doing Fisher-Yates shuffle and selecting first
! oasize elements
do i = 1, asize - 1

j = i + floor((asize - i) * trials(i))
! Axchange arr(i, :) and arr(j,:)
temp = arr(j, :)
arr(j, :) = arr(i, :)
arr(i, :) = temp

end do
outarr = arr(:oasize, :)

end subroutine random_sample

subroutine writetofile(outfile, infile, &
df, errdf, numsites, mp, vp, mf, vf, verbose)
! Ouput results of sandbox analysis to file. Format is as follows
! [infile_name] [df] [errdf] [aval_size] [mp_1] [vp_1] [mf_1] [vf_1] ... [mp_lmax] [vp_lmax] [mf_lmax] [vf_lmax]
! i.e. the columns following column 4 come in groups of four, each
! containing (mp, vp, mf, vf) for one of the lmax bounding boxes

character(256), intent(in) :: infile
character(256), intent(in) :: outfile
real*8, intent(in) :: df, errdf
integer*8, intent(in) :: numsites
real*8, intent(in) :: mp(:), vp(:), mf(:), vf(:)
logical, intent(in), optional :: verbose

character(256) :: fmt, vfmt, hdrfmt
integer, parameter :: fu = 1000
integer :: l, lmax

! Output width depends on number of data points
lmax = size(mp)
write(fmt, ’("(a48, 2f8.4, i10, ", i8, "es18.8)")’) 4*lmax

open(unit=fu, file=outfile, action=’write’, position=’append’)
write(fu, fmt) infile, df, errdf, numsites, &

(mp(l), vp(l), mf(l), vf(l), l = 1, lmax)
close(fu)

if (present(verbose) .and. verbose) then
vfmt = ’(i6, 4es18.8)’
hdrfmt = ’(a6, 4a18)’
write(*, hdrfmt) ’l’, ’mp’, ’vp’, ’mf’, ’vf’
do l = 1, lmax

write(*, vfmt) l, mp(l), vp(l), mf(l), vf(l)
end do

end if

end subroutine writetofile

end module input_output

program main
! The main coordinator for avalanche fractal analysis. Reads input file
! given as command line argument, converts coordinates to occupancy , sends
! for sandbox algorithm analysis, receives statistics back, writes to
! output file.
use input_output
use sandbox
use lin_reg
use iso_fortran_env , only: error_unit
implicit none
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integer :: i, lmax, numargs
integer*8 :: j, numfluid , nummat, ransize
integer, allocatable :: A(:,:,:), T(:,:,:), &

flucoords(:,:), matcoords(:,:), samplecoords(:,:)
real*8 :: intcpt, df, errintcpt , errdf, ranprop = 1.0
real*8, allocatable :: mp(:), vp(:), mf(:), vf(:)
character(256) :: infile, matfile, outfile, filename, temp
logical :: verbose = .false.

! Interpret command line arguments
numargs = command_argument_count()
call get_command_argument(1, infile)
call get_command_argument(2, matfile)
call get_command_argument(3, temp)
read(temp, ’(i8)’) lmax
call get_command_argument(4, outfile)
if (numargs > 4) then

do i = 5, numargs
call get_command_argument(i, temp)
! Only check arguments if not found yet
if (.not. verbose) verbose = (index(temp, ’v’) /= 0)
if (verify(temp, ’ .0123456789’) == 0) then

! User has passed size of random sample
read(temp, ’(f8.4)’) ranprop
ranprop = ranprop / 100.0

else
ranprop = 1.0

end if
end do
if (verbose) write(*,*) ’Entering verbose mode’

end if

! Read file lengths and allocate arrays
filename = filefrompath(infile)
numfluid = get_file_length(infile) ! Total number of fluid coords
nummat = get_file_length(matfile) ! " " matrix " "
ransize = floor(ranprop * numfluid)
allocate(&

flucoords(numfluid, 3),& ! Fluid coordinates list
matcoords(nummat, 3), & ! Matrix coordinates list
A(lmax, lmax, lmax), & ! Fluid occupation array
T(lmax, lmax, lmax), & ! Matrix occupation array
mp(lmax), & ! Mean pore space in bboxes of size l
vp(lmax), & ! Variance in pore cell number in l-bboxes
mf(lmax), & ! Mean fluid cells in bboxes of size l
vf(lmax), & ! Variance in fluid cell number in l-bboxes
samplecoords(ransize, 3), & ! Random sample of fluid coords

)

! Read in fluid and matrix coordinates , filling coord and occ arrays
call read_coords(infile, numfluid , lmax, A, flucoords)
call read_coords(matfile, nummat, lmax, T, matcoords)

! Reduce flucoords to a random subset of size ranprop * numfluid
if (ransize < numfluid) then

call random_sample(flucoords , codefromfile(filename), samplecoords)
else

samplecoords = flucoords
end if

! Run core code from sandbox.f95
call main_loop(samplecoords , A, T, mp, vp, mf, vf)

! Quick and dirty least squares straight-line fit
call lst_sq_fit(log10(mp), log10(mf), intcpt, df, errintcpt , errdf)

if (verbose) then
do i = 1, lmax
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write(*,’("\r\n z = ", i4)’) i
do j = 1, lmax

write(*, ’(100i2)’) A(:, j, i)
end do

end do
end if

! Output results to outfile
call writetofile(outfile, filename , df, errdf, ransize, mp, vp, mf, vf, verbose)

! Give a little helpful output to stdout
write(*,’(a48, i8, f14.8, f14.8)’) &

filename , ransize, df, errdf

end program main

B.2 Module for sandbox analysis numerical routines

! Filename: sandbox.f95
! Path: /home/jake/Documents/Project/avalanche_fractal_analysis
! Created Date: Wednesday , October 27th 2021, 11:09:55 pm
! Author: Jake Skelton

! Copyright (c) 2021 Jake Skelton

! Core code to perform sandbox analysis on a single avalanche. To be called by
! program main stored in main.f95

module sandbox

implicit none
contains

subroutine main_loop(coords, A, T, mp, vp, mf, vf)

integer, intent(in) :: &
coords(:,:), & ! BCC coordinates of avalanche fluid cells
A(:,:,:), & ! Array representation of avalanche
T(:,:,:) ! Array representation of pore space

real*8, intent(out) :: &
mp(:), & ! Mean number of pore cells in bounding box of linear size

! [index]
vp(:), & ! As above, but variance
mf(:), & ! Mean number of fluid cells in bounding box of linear

! size [index]
vf(:) ! As above, but variance

integer, allocatable :: tessA(:,:,:), tessT(:,:,:), ii(:,:,:), iiT(:,:,:)
integer :: x, y, z, coord(3), lmax, l
integer*8 :: n, numsites , f, p

! Get important sizes from arguments
numsites = size(coords, 1)
lmax = size(A, 1)
! [1, lmax]^3 references the centre of the tesselated system
allocate(tessA(-lmax+1 : 2*lmax, -lmax+1 : 2*lmax, -lmax+1 : 2*lmax), &

tessT(-lmax+1 : 2*lmax, -lmax+1 : 2*lmax, -lmax+1 : 2*lmax), &
ii(-lmax : 2*lmax, -lmax : 2*lmax, -lmax : 2*lmax), &
iiT(-lmax : 2*lmax, -lmax : 2*lmax, -lmax : 2*lmax))
! One greater on each dimension to prevent OOB

! Tesselate A 3x3x3 times to deal with periodic BCs. Then, make
! integral image from it
do x = -lmax + 1, lmax + 1, lmax
do y = -lmax + 1, lmax + 1, lmax
do z = -lmax + 1, lmax + 1, lmax
tessA(x : x+lmax-1, y : y+lmax-1, z : z+lmax-1) = A
tessT(x : x+lmax-1, y : y+lmax-1, z : z+lmax-1) = T

end do
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end do
end do
call makeii(lmax, tessA, ii)
call makeii(lmax, tessT, iiT)

! Calculate total mass in system
mp = 0.; vp = 0.; mf = 0.; vf = 0.

# ifdef DEBUG
write(*, "(a8, i8, 5a4)") ’origin /’, numsites , ’x’, ’y’, ’z’, ’l’

# endif
! Main loop
do n = 1, numsites
coord = coords(n, :)

! Can save effort for single-element boxes
f = A(coord(1), coord(2), coord(3))
p = T(coord(1), coord(2), coord(3))
call iterate_stats(n, mf(1), vf(1), f)
call iterate_stats(n, mp(1), vp(1), p)

do l = 2, lmax
#ifdef DEBUG

write(*, ’(a, i16, 5i4)’, advance=’no’) achar(13), n, coord, l
#endif

call iisum(lmax, l, ii, coord, f)
call iisum(lmax, l, iiT, coord, p)
call iterate_stats(n, mf(l), vf(l), f)
call iterate_stats(n, mp(l), vp(l), p)

end do
end do

! E(x^2) - (E(x))^2
vp = vp - mp**2
vf = vf - mf**2

# ifdef DEBUG
write(*,*)

# endif

end subroutine main_loop

subroutine makeii(D, A, ii)
! Construct the integral image (Viola, Jones 2004) from a given array.

! Had to make the argument list a bit ugly to retain funky subscripts
integer, intent(in) :: D ! 1/3 * sidelength of A
! Array (’image ’) we wish to compute sums on

integer, intent(in), dimension(-D+1:2*D, -D+1:2*D, -D+1:2*D) :: A
! Output object for integral image

integer, intent(out),dimension(-D:2*D, -D:2*D, -D:2*D) :: ii

integer :: x, y, z

ii = 0
do x = -D + 1, 2*D ! Recall ii has non-standard subscripts
do y = -D + 1, 2*D
do z = -D + 1, 2*D
ii(x, y, z) = A(x, y, z) &
+ ii(x-1, y, z) + ii(x, y-1, z) + ii(x, y, z-1) &
- ii(x-1, y-1, z) - ii(x-1, y, z-1) - ii(x, y-1, z-1) &
+ ii(x-1, y-1, z-1)

end do
end do

end do

end subroutine makeii

subroutine iisum(lmax, l, ii, centre, mass)
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! Compute a box sum on an array by utilising the integral image
! representation. This method performs independently of box size.

integer, intent(in) :: lmax
! The integral image array

integer, dimension(-lmax:2*lmax,-lmax:2*lmax,-lmax:2*lmax), intent(in) :: ii
integer, intent(in) :: l ! Sidelength of box to sum
integer, intent(in) :: centre(3) ! Centre of box
integer*8, intent(out) :: mass ! Where the total will be put

integer :: lb(3)

if (mod(l, 2) == 0) then ! Test even
lb = centre - (l/2 - 1) - 1 ! Asymmetric bounds

else
lb = centre - (l - 1)/2 - 1 ! Symmetric bounds

end if

! Can be expressed more succintly but this needs to go fast
mass = ii(lb(1) + l, lb(2) + l, lb(3) + l) &

- ii(lb(1) + l, lb(2) + l, lb(3) ) &
- ii(lb(1) + l, lb(2) , lb(3) + l) &
- ii(lb(1) , lb(2) + l, lb(3) + l) &
+ ii(lb(1) + l, lb(2) , lb(3) ) &
+ ii(lb(1) , lb(2) + l, lb(3) ) &
+ ii(lb(1) , lb(2) , lb(3) + l) &
- ii(lb(1) , lb(2) , lb(3) )

end subroutine iisum

subroutine iterate_stats(n, mean, sumsq, datum)
! Update mean and sum of squares using ’datum’ when moving from n - 1 to n
! data points. i.e. this should first be called with n=1.

integer*8, intent(in) :: n
integer*8, intent(in) :: datum
real*8, intent(inout) :: mean, sumsq

mean = (datum + (n - 1)*mean) / n
sumsq = (datum**2 + (n - 1)*sumsq) / n

end subroutine iterate_stats

end module sandbox
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